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ABSTRACT 

 The loss and fragmentation of Iowa’s native prairies has had varied effects on 

different species as some move more easily through unsuitable habitat than others. Small 

mammals may be highly affected by isolation as they may not move easily among habitat 

patches. I studied white-tailed jackrabbits (Lepus townsendii) as a representative of Iowa’s 

grassland-adapted species to determine effects of habitat fragmentation on movement 

patterns, space use, and genetic diversity. I tracked radio-collared jackrabbits from 

September 2008-September 2009 to determine habitat use in an intensively agricultural 

landscape. I collected tissue from live-captured animals and road-killed samples across Iowa 

and South Dakota.  Home ranges expanded and shifted following corn harvest (October 

2008) and prior to the breeding season (February-May 2009).  Home ranges contracted from 

the end of the breeding season until right before harvest (September 2009) as crop height 

increased.  The population genetic structure analyses suggested there were two populations in 

Iowa, a central and northwestern population.  The northwest Iowa population is not distinct 

from South Dakota individuals and is moderately differentiated from the less genetically 

diverse central Iowa population. White-tailed jackrabbit movement patterns are affected by 

agricultural practices and agricultural fields are a potential barrier to gene flow.  These 

anthropogenic alterations of the landscape in Iowa may also alter other aspects of jackrabbit 

ecology and other grassland-adapted species. 
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CHAPTER 1: GENERAL INTRODUCTION 
 

Declines and extinction of numerous wild species, across taxonomic groups, have 

been attributed to loss and fragmentation of habitat associated with anthropogenic landscape 

changes (Fischer and Lindenmayer 2007).  For example, North American prairie grasslands 

have declined greatly in both availability and wildlife diversity.  With approximately 99% of 

all historic prairies eliminated, 55 grassland species in the U.S. are listed as threatened or 

endangered and 728 species are candidates for listing (Samson and Knopf 1994).  This 

decline in North American prairie is largely attributed to agricultural intensification, the 

increase in cultivated land and field size for the maximum output of crops, including 

monoculture plantings, and has become a global issue over the past several decades.  The 

decline of tall-grass prairies is prominent in the midwestern U.S.  Prairie once covered 

125,000 km² in the state of Iowa but less than 0.1% of that historic prairie remains.  About 

60% of Iowa’s land is now planted to annual row crops, especially corn (Tucker et al. 2008).   

This loss and fragmentation of Iowa’s native landscape has had a dramatic effect on 

its native fauna (Dinsmore 1994).  Numerous species adapted to native prairies, particularly 

those with large space requirements, have long been extirpated from Iowa.  However, many 

have persisted, perhaps due to their ability to maintain viable populations in small habitat 

patches or their ability to persist in a metapopulation structure.  Persistence of remnant 

populations may be threatened as the national impetus to move toward a bioeconomy 

forecasts major changes in Iowa’s landscape once more (Heisey 2009).  In order to predict 

how changes in the landscape and land use will affect Iowa’s wildlife diversity, it is 
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necessary to understand current relationships between wildlife species and their fragmented 

environment.   

One grassland species still found in Iowa is the white-tailed jackrabbit (Lepus 

townsendii), also referred to as the prairie hare.  Suitable jackrabbit habitat is likely scarce 

and isolated across the state.  White-tailed jackrabbits prefer open habitats (Kline 1963; Lim 

1987) and rely on vision to detect, and speed to avoid, predators rather than making use of 

burrows (Rogowitz and Gessaman 1990) as do cottontail rabbits (Sylvilagus floridanus).  The 

extent to which jackrabbits may be able to move across the expansive corn fields that now 

dominate Iowa’s landscape is unknown.  Small mammals may, in many cases, be more 

restricted than birds with respect to movement across unsuitable habitat.  Among small 

mammals, jackrabbits are likely to be more sensitive to fragmentation due to larger space 

needs, with annual home ranges of ≥ 2 km in grasslands (Donoho 1972; Schaible 2007).  

Furthermore, jackrabbits may have more restrictive habitat requirements than many smaller 

mammal species in altered habitats.  Jackrabbits in Iowa occur at the eastern boundary of 

their historic range (Lim 1987), they may be more susceptible to fragmentation and isolation 

due to the decline in suitable habitat that typically defines species’ range boundaries (Swihart 

et al. 2003).  The Iowa Department of Natural Resources (IDNR) listed the white-tailed 

jackrabbit as a species of greatest conservation need in the Iowa Wildlife Action Plan (Zorher 

2006).  

 White-tailed jackrabbits may also be vulnerable to detrimental genetic effects 

associated with fragmentation.  As suitable habitat decreases, a population’s size may 

decrease.  With the loss of individuals comes a loss of some rare alleles, making the 

population susceptible to reduced gene flow and loss of genetic diversity (Garner et al. 2005; 
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Lacy 1997).   Furthermore, small isolated populations are at risk of local extinction due to 

increased susceptibility to stochastic demographic or environmental variability alone or 

combined with loss of genetic variation (Frankham 2005; Laikre et al. 2009; Templeton et al. 

1990).  The extent to which populations of white-tailed jackrabbits in Iowa are genetically 

isolated due to land use changes is unknown.   These characteristics make the white-tailed 

jackrabbit a particularly suitable species in which to investigate the effects of fragmentation, 

changing land use, and agricultural practices on small mammal populations.   

The distribution of the white-tailed jackrabbit ranges from the Great Plains in central 

Saskatchewan south to the Rocky Mountains at the northern border of New Mexico and 

inland from the west coast to Lake Michigan in Wisconsin (Lim 1987).  While the historic 

range of white-tailed jackrabbits is thought to have included only northwest Iowa, breaking 

up the tall-grass prairie for cultivation of diverse crops in the late 19th and early 20th century 

increased the range of jackrabbits into eastern and southern portions of Iowa (Lim 1987).  

However, jackrabbit populations appear to have declined dramatically across Iowa, as the 

proportion of acres in small grains and hay, which is more suitable white-tailed jackrabbit 

habitat, has declined relative to the proportion of acres planted to corn and soybeans 

(Bogenschutz et al. 2007).  White-tailed jackrabbit densities have been estimated to average 

7/ km² in parts of Wyoming, 0.4-2.3/km² in Colorado (Flinders and Hansen 1973, 1975), 4-

8/km² in Minnesota (Mohr and Mohr, 1936), and 27.12/km² in northwest South Dakota 

where habitat is most ideal for jackrabbits (Schaible 2007).  Kline (1963) estimated 

population densities in Iowa at 2-6 hares per square km to be common, with occasional highs 

of 12 per square km, based on records of circle hunts and personal observations.  Records of 

jackrabbit densities, obtained from the IDNR roadside surveys conducted from 1962 to 2007 
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(Bogenshutz et al. 2007), show a significant decline in jackrabbits across the state, with < 1 

observed per 78-km stretch of road by 2007. The jackrabbit estimates from the roadside 

surveys can be considered an underestimate, however, as they only count jackrabbits 

observed by the road during the day and L. townsendii tends to be crepuscular (Rogowitz 

1997).  Estimates of jackrabbit numbers in the state of Iowa do not exist but populations of 

jackrabbits still persist in northwest and central Iowa with occasional sightings in northeast 

and southern Iowa (Fairbanks, unpublished data; E. Colboth, USDA-APHIS Wildlife 

Services, personal comm.).   

White-tailed jackrabbit biology has not been studied in-depth, but some basic 

information is known.  White-tailed jackrabbits have a brownish-gray summer coat with 

white underparts.  They undergo two molts a year.  The winter molt occurs in November to 

early December, in Iowa (Kline 1963), when the summer coat is replaced with a white winter 

coat, although the tips of the ears remain black.  This winter coat is thicker and reduces heat 

loss (Rogowitz  and Gessaman 1990).  The winter coat is replaced by the summer coat in 

March to early April (Kline 1963).  White-tailed jackrabbits acquired their name from their 

distinctive white tails that do not change color with molting.  The sexes are not 

distinguishable without inspection of their reproductive anatomy. 

White-tailed jackrabbit diets consist of forbs, shrubs and grasses.  In natural habitats, 

forbs account for the majority (70%) of their summer diet with a shift to shrubs (76%) in 

winter months (Bear and Hansen 1967), although foraging habits in highly agricultural 

settings remain unknown.  Duration of foraging increases in winter months with persistent 

snow cover, but is not affected by precipitation (Rogowitz 1997).    Predators include red 

foxes (Vulpes vulpes), coyotes (Canis latrans), grey wolves (Canis lupus), weasels (Mustela 
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sp.), martens (Martes americana), bobcats (Lynx rufus), lynx (Lynx canadensis), golden 

eagles (Aquila chrysaetos), and hawks (Buleo sp.; Lim 1987).  Red foxes, coyotes, weasels, 

bobcats, and hawks are all found in Iowa, although coyotes are most likely the main 

predators in the state due to their size, abundance and the size of adult jackrabbits.  Adult 

white-tailed jackrabbits in Iowa weigh 3.10 to 3.80 kg, on average, with females being the 

larger sex (Kline 1963).  The range of bobcats in Iowa is generally restricted to the southern 

one-third of the state (Tucker et al. 2008), limiting their potential as jackrabbit predators.  

White-tailed jackrabbits are promiscuous (Chapman et al. 1982).  Breeding behavior 

is characterized by chasing, circling and jumping exhibited by two or more jackrabbits 

(Blackburn 1968); personal observation) between February and July (James and Seabloom 

1969; Rogowitz 1992).  The specific length and timing of the breeding season in Iowa is not 

known, but is likely dependent on environmental factors such as snow melt (Rogowitz 1992).  

White-tailed jackrabbits can produce up to four litters a year (James and Seabloom 1969) and 

gestation lasts 42 days in Iowa, according to Kline (1963).  This species displays 

synchronous breeding and postpartum estrous (James and Seabloom 1969; Kline 1963; 

Rogowitz 1992).  Litter size ranges from 1 to 11 leverets, averaging 4 to 5 (Kline 1963), 

although lower fertility may be exhibited in the first and last litters of the season (Rogowitz 

1992).  Juveniles are not known to reproduce in their first year (James and Seabloom 1969, 

Rogowitz 1992) and the typical lifespan of a white-tailed jackrabbit is < 1 year in Wyoming 

(Rogowitz and Wolfe 1991). These demographic parameters will be important to verify for 

any given population, as the published values suggest that only a small percentage of 

juveniles born in a particular year will survive long enough to contribute offspring the 

following year.   
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Genetic studies of white-tailed jackrabbits have been limited to a handful of 

descriptive karyotyping analyses (Lim 1987).  This species is diploid and has a total of 48 

chromosomes with lengths ranging from 1.5-6.5 microns (Jalal et al. 1967).    A single 

genetic sample from a white-tailed jackrabbit was also used to assess cross-species 

transferability of microsatellites developed for the European rabbit (Oryctolagus cuniculus; 

(Surridge et al. 1997). Microsatellites are genetic markers that consist of nucleotide repeats 

that are generally characterized by high levels of polymorphism.  A study of population 

genetic structure using microsatellites could yield valuable information about genetic 

diversity, levels of inbreeding, and population differentiation among populations of white-

tailed jackrabbits.   

As an initial step toward understanding the dynamics of grassland-adapted small 

mammal populations in a changing, human-dominated landscape, we undertook a study of 

movement patterns of white-tailed jackrabbits in Iowa. Our study integrated population 

genetic and radio-transmitter tracking methods to assess connectivity among populations as 

well as potential effects of seasonal land cover changes on movements of animals.  Genetic 

samples collected opportunistically from across Iowa and South Dakota, and from jackrabbits 

captured live on the Iowa State University Agronomy and Agricultural Engineering Research 

Farm (hereafter, Research Farm, Fig. 1) in Boone County, IA, were used to investigate 

regional genetic differences. The objectives of this study were to 1) determine the movement 

and seasonal land use patterns of white-tailed jackrabbits in Iowa’s intensively agricultural 

landscape by means of radio-telemetry field studies and 2) quantify genetic diversity and 

connectivity of white-tailed jackrabbit populations in Iowa by assessing the number of 

populations in Iowa, their genetic diversity, and the degree of genetic connectivity between 
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these populations.  Collectively, the results of this study are expected to be useful in the 

development of conservation management strategies for the white-tailed jackrabbit in Iowa, 

serve as an indicator of the potential effects of fragmentation on small mammals restricted to 

grassland habitats, and provide baseline data to assess impacts of impending land use change 

in Iowa. 

 

Figure 1.  Map of the Iowa State University Agronomy and Agricultural Engineering 

Research Farm and surrounding private lands in Boone, County, Iowa.  Fields known to be 

planted to corn in 2008 are represented in yellow.  Oat fields are shown in tan, soybean fields 

in dark green, and alfalfa fields in purple.  All remaining fields were planted to some 

combination of these crops or were unknown for 2008.   
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THESIS ORGANIZATION 

 This thesis consists of four chapters.  Chapter 1 is an introduction to my study.  

Chapter 2 reports results of a telemetry study documenting seasonal shifts in home range 

size, degree of overlap between individuals, and seasonal shifts in land use exhibited by 

white-tailed jackrabbits in central Iowa.  Chapter 3 investigates genetic diversity and genetic 

differentiation of white-tailed jackrabbit populations across Iowa and South Dakota.  

Chapters 2 and 3 are intended for publication in peer-reviewed journals with co-authors listed 

at the beginning of each chapter. W. Sue Fairbanks and Julie Blanchong contributed to the 

development of this study, field and lab assistance, and were editors on chapters.  Todd 

Bogenshutz and Mark McInroy  (IDNR) assisted with field research and are contributing 

authors for chapter 2.  Chapter 4 is an overall discussion of the results and their implications 

for the persistence of white-tailed jackrabbits in Iowa, with suggestions for future research.   
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CHAPTER 2: SEASONAL HOME RANGES AND MOVEMENT 
PATTERNS OF AN IOWA SPECIES OF GREATEST CONSERVATION 

NEED, THE WHITE-TAILED JACKRABBIT 
 

A paper to be submitted to The Journal of Mammalogy 
 

Irma Tapia, W. Sue Fairbanks, Julie Blanchong, Mark McInroy and Todd Bogenschutz 
 

ABSTRACT 
 

 Habitat fragmentation can have varied effects on different species as some move 

more easily through unsuitable habitat to reach fitting environments. Small mammals may be 

highly affected by isolation as they may not easily move among habitat patches. We 

investigated the white-tailed jackrabbit (Lepus townsendii) as a representative grassland-

adapted species to determine effects of habitat fragmentation on movement patterns and 

space use in an intensively agricultural landscape. Home range sizes increased following 

corn harvest when jackrabbits also increased their use of those harvested fields.   However, 

jackrabbits selected against corn fields, compared to availability in the pre-harvest 

(September 2008 - October 2008), post-harvest (November 2008 - January 2009), and growth 

seasons (June 2009 – September 2009).  Agricultural practices altered movement patterns 

and space use of white-tailed jackrabbits and may affect timing of dispersal.     

 
INTRODUCTION 

 
 Shifts in land cover from natural to agricultural habitats have had diverse effects on 

wildlife.  Medium-sized generalist predators tend to thrive in farmlands rich in accessible 

forage (Heske et al. 1999; Litvaitis and Villafuerte 1996; Oehler and Litvaitis 1996). On the 

other hand, large proportions of agricultural land have been implicated in high losses of 
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imperiled species (Gibbs et al. 2009).  Agriculture has also been listed as one of the most 

frequent contributors to species declines in the U.S.A. (Czech et al. 2000).  The conversion of 

natural habitats to agriculture may reduce suitability of the land to various species and limit 

movement of wildlife between remnant habitat patches. Agricultural intensification, the 

increase in cultivated land and field size for the maximum output of crops, including 

monoculture plantings, has become a global issue over the past several decades.  This 

intensification has decreased habitat availability and increased fragmentation for many 

species around the world, particularly in the Midwestern U.S. (Basore et al. 1986; Fahrig and 

Merriam 1985; Grixti et al. 2009; Woolf and Hubert 1998). 

 Iowa’s landscape has been changing dramatically for over 150 years, first with 

European settlers breaking up the tall grass prairie to plant crops for their livelihood and 

more recently with the intensification of agriculture.  In the 1850’s, prairie made up over 

60% of Iowa’s landscape.  By the turn of the 21st century, a mere 0.1% of historic prairie 

remained (Zorher 2006), with the small remnant patches of natural prairie typically isolated 

from one another by large agricultural fields.  This loss and fragmentation of Iowa’s native 

landscape has had a dramatic effect on its native fauna.  Numerous species adapted to native 

prairies, particularly those with large space requirements like bison (Bos bison) and elk 

(Cervus elaphus), have long been extirpated from Iowa (Dinsmore 1994) and many that 

remain are also declining, such as prairie chickens (Tympanuchus cupido pinnatus), least 

shrews (Cryptotis parva), and white-tailed jackrabbits (Lepus townsendii)  .   

 The white-tailed jackrabbit is considered an Iowa Species of Greatest Conservation 

Need (Zorher 2006).    This species has declined dramatically in the state, according to 

August roadside surveys conducted by the Iowa Department of Natural Resources (IDNR), 
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for over half a century (Bogenschutz et al. 2007).  Habitat changes associated with 

agricultural intensification have been named as the ultimate cause of declines in European 

hare (Lepus europaeus) populations (Smith et al. 2005).  Iowa’s landscape has been stripped 

of its natural diversity and does not maintain much crop diversity, as it is now dominated by 

monocultures of soybeans and tall corn, likely reducing habitat suitability for jackrabbits.  

White-tailed jackrabbits prefer open habitats (Kline 1963; Lim 1987) and rely on vision to 

detect, and speed to avoid, predators rather than making use of burrows (Rogowitz and 

Gessaman 1990) as do cottontail rabbits (Sylvilagus floridanus).  Small mammals may, in 

many cases, be more restricted than birds with respect to movement across unsuitable habitat.  

Among small mammals, jackrabbits are likely to be more sensitive to fragmentation due to 

larger space needs and more restrictive habitat requirements than many smaller mammal 

species. White-tailed jackrabbits in open, grassland habitats have annual home ranges ≥ 2.00 

km² (Donoho 1972; Schaible 2007). Many species of grassland rodents have been shown to 

have much smaller home ranges, including the hairy-tailed bolo mouse (Necromys lasiurus), 

the grassland mouse (Mus spretus Lataste), and the meadow vole (Microtus pennsylvanicus) 

with respective home ranges of ≤ 0.005 km², ≤ 438 m², and ≤ 0.002 km² (Blair 1940; Gray et 

al. 1998; Pires et al. 2010). Further, as jackrabbits in Iowa occur at the eastern boundary of 

their historic range (Lim 1987), they may be more susceptible to fragmentation due to the 

decline in suitable habitat that typically defines species’ range boundaries (Swihart et al. 

2003).     

 Suitability of habitat may vary temporally, especially in agricultural settings where 

farming practices dramatically change the landscape on a seasonal basis. Hairy-footed gerbils 

(Gerbillurus paeba) responded to annual changes in matrix habitat structure, brought on by 
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rainfall, colonizing once unsuitable habitat between otherwise fragmented populations 

(Blaum and Wichmann 2007).  The authors suggested that temporal heterogeneity of habitat 

should be considered in other studies of fragmentation.  Harvest is a major contributor to the 

change in Iowa’s landscape as tall corn fields, that may represent unsuitable jackrabbit 

habitat, may be converted to more fitting habitat in the form of short stubble fields following 

harvest.  To predict how changes in the landscape and land use have, and will continue to, 

affect Iowa’s wildlife diversity, it is necessary to understand current relationships between 

wildlife species and their fragmented environment.  In addition, understanding the conditions 

under which remnant species are able to co-exist with intensive agriculture on the landscape 

will assist with management and recovery plans for species of conservation need. 

In this study, we investigated how a grassland-adapted species, the white-tailed 

jackrabbit, uses Iowa’s intensively agricultural landscape. We chose to study this species as it 

has large space needs in non-agricultural habitats, relative to other small mammals (Donoho 

1972).  Jackrabbits may also alter their space use in response to agricultural practices as has 

been seen in European hares (Chapuis 1990; Marboutin and Aebischer 1996; Reitz and 

Leoanrd 1994; Tapper and Barnes 1986). The objectives of this study were to 1) estimate 

home range size on a seasonal basis, 2) investigate field type use on a seasonal basis, 3) 

estimate survival rates and investigate temporal patterns in survival, and 4) estimate 

population size in recent years.   

MATERIALS AND METHODS 

Study Area- Our study site was the Iowa State University Agronomy and Agricultural Engineering 

Research Farm (Research Farm, 42°3′40″N 93°53′10″W, Fig. 1) and adjacent farm land in Boone 

County, Iowa.  The Research Farm lands encompass 2.75 km² and are planted to variable-sized, 
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but relatively small plots (0.13 m² - 0.098 km²) of corn, soybeans, oats, alfalfa and wheat.  The 

fields are divided by large, mowed grassways (tall fescue, Schedonorus phoenix (Scop.) Holub) 

about 10-15 m wide.  The Research Farm is surrounded by private farmlands that grow primarily 

corn in 0.65 km² fields.   

Data Collection- Jackrabbits were live-captured on the Research Farm by drive-netting, beginning 

in September 2008.  One-meter-high wing fences were set extending from the corner of a 

harvested oat or alfalfa field, forming a large V.  Wing fences were approximately 100 m long on 

each side, composed of nylon netting, with a stake about every 2 m.  The stakes were set and the 

nets were laid out, rolled up on the ground to permit entrance to the field, a day or two before the 

drive.  The day of the drive, 2-4 people set the net on wire barbs attached to the tops of  the stakes 

so that, when a jackrabbit ran into the net, the top of the net fell on the animal.  The same people 

positioned themselves behind the net to quickly reach a jackrabbit captured in the net before it 

could escape. A crew of 10-15 people moved toward the net from the opposite edge of the field, 

making noise to flush jackrabbits from their resting sites. When a jackrabbit ran into the net, one 

of the people positioned behind the net held it down by placing one hand anterior to the hips with 

fingers facing posteriorly and another hand extending the hind legs with two digits between the 

legs for a firm grip.   

Once the animals were extracted from the net they were placed in a restraint cone, scaled 

up from guidelines in Koprowski (2002), to facilitate handling of the animals.  A livestock ear-

notch tool was used to remove a piece of ear tissue for genetic studies (see Ch.3), and a radio-

collar (Advanced Telemetry Systems, Isanti, MN) was attached.  We collected basic information 

from live-captured animals including: sex, standard size measurements (body length, hind-foot 

length, ear and tail length), and weight (measured with a hand-held spring scale). A protocol 

http://plants.usda.gov/java/ClassificationServlet?source=profile&symbol=SCPH&display=63�
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specific to this project outlining all procedures performed on animals was approved by Iowa State 

University’s  Institutional Animal Care and Use Committee  (# 2-08-6502-W) and met guidelines 

approved by the American Society of Mammalogists (Gannon and Sikes 2007). 

We tracked radio-collared animals for a period of one year, September 2008-

September 2009.  Collars had a battery life of 894 days and weighed about 40g (0.08-0.10% 

of the weight of an adult jackrabbit).  Radio-collared animals were located by sight or 

triangulation 3 times a week on random days and at random times throughout the day and 

night. Radio-tracking occasions were separated by a minimum of 24 hrs to maintain 

independence.  Field types in which jackrabbits were located were also recorded.   

The tracking year was divided into 4 seasons likely to result in changes in food 

availability and cover for jackrabbits.  The pre-harvest season, September-October 2008, was 

prior to the corn harvest.  In the post-harvest season, November 2008-January 2009, the corn 

had been harvested, reducing those fields to stubble.  In the breeding season, February-May 

2009, the jackrabbits were breeding and the crops were just being planted and beginning to 

grow.   By the growth season, June-September 2009, the breeding season was ending and the 

crops, especially the corn, were gaining height, providing more cover and reducing visibility.    

 We estimated population densities on the Research Farm using a line-transect 

spotlighting method.  Spotlighting was performed on the Research Farm, after the breeding 

season and before corn harvest, for 4-6 days per month: July-October 2008 and July-October 

2009.  A straight-line transect was not possible on the Research Farm, so a survey route 

through the farm (Fig. 1) was used. We established the route to minimize recounting the 

same individuals by avoiding tight turns and bends as much as possible (Smith and Nydegger 

1985).  The same survey route had been used for 2 years before this study began (Fairbanks, 
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unpublished data). We drove the survey route at speeds of <15 kph between 1900 and 2300 

h. A 1,000,000- watt spotlight was used to sight the jackrabbits along the transect.  Leupold 

laser rangefinders were used to determine the bearing and distance from the observer and the 

offset function of a Trimble Geo Explorer 3 GPS unit was used to record the location of 

jackrabbits spotted. The number of jackrabbits in a group and field types being used were 

also recorded.  Likelihood of recounting was minimized by observing directional movement 

of jackrabbits after spotting. 

Analyses- A maximum likelihood estimator in LOAS 4.0 (LOAS 2007) was used to estimate 

triangulated locations .  Home ranges were delineated using the Fixed Kernel Density 

Estimator in the Hawth’s Analysis Tools Extension for ArcGIS® 9.2.  The fixed kernel 

density estimator calculates an individual’s probability distribution of use given the locations 

in which it was observed.  Least squares cross validation was used to determine the 

appropriate smoothing parameter (White and Garrott 1990) and 50% and 95% kernel 

isopleths, areas encompassing 50% and 95% of the distribution of use, were created for 

individuals in all seasons. We used 95% kernels to test for differences in home range size 

among seasons and differences in home range size between the sexes with Mann-Whitney U 

tests.   

 We used a chi square contingency table to test for differences in field type use in day 

versus night and in males versus females.  Habitat selection was tested by comparing habitat 

use and habitat availability within each season. Habitat use was established with the records 

of field types used by all jackrabbits in each season.  A minimum convex polygon of all 

jackrabbit locations throughout the year of tracking was created and the percent cover of each 

field type within that polygon was used as an index of habitat availability. Habitat 
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availability was consistent for the pre-harvest, post-harvest, and breeding seasons.  However, 

crop planting took place in the spring when some fields were planted to different crops.  

Therefore the habitat availability for the growth season was based on the same area but has a   

different field type composition.  A chi-square contingency table was used to test for 

differences between the observed habitat use and the expected habitat use (based on 

availability) in each season.   

 Seasonal shifts in home ranges were investigated by calculating volume of 

intersection (VOI), defined as the area of home range overlapping with another home range, 

for the same individual from season to season.  We also compared VOI between individuals 

by season for the males overlapping with males, females overlapping with females, and 

males overlapping with females and VOI between the groups of males overlapping with 

males, females overlapping with females, and males overlapping with females within 

seasons.  All VOI calculations were expressed as the percent of an individual’s home range 

overlapped by the same individual in a different season, or by another individual in the same 

season. Differences in median percent VOI were tested with a Kruskal-Wallis test.  

We used radio-tracking data from individuals to estimate daily survival rates (DSR) 

using nest survival models in program MARK (White 2010).  MARK uses maximum 

likelihood methods to estimate DSR.  The nest survival model is often used in birds to 

estimate survival to fledging, but is not limited to such studies.  This model was used as it 

does not require the exact dates of mortality, which were unknown for our study.  Survival 

for individual jackrabbits was assumed to be independent.  We created 7 models using the 

factors season, daily minimum temperature, and sex as they were expected to have 

significant effects on survival (Table 1).    Season was expected to have a significant effect 
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on survival because agricultural practices are associated with specific times of year in which 

availability of forage and cover shift, potentially changing a jackrabbit’s susceptibility to 

predation.  Daily minimum temperature was included as a factor to account for shifts in 

energy expenditure related to thermoregulation and forage availability.  Sex was included to 

account for differences in survival associated with differences in energy allocated to 

reproduction.  Models were compared using Akaike’s information criterion adjusted for 

small sample size (AICC), ∆ AICC, and the Akaike weight (Burnham and Anderson 2002) to 

determine variation in survival.  AIC measures the fit of the model to the data but penalizes 

for complexity.  If competing models are similar in accuracy but vary in complexity (number 

of parameters), the model with the fewest parameters will have the higher AIC score and be 

termed the “best” model.  “Best” here implies that, of the models being tested, it represents 

the data the most accurately.  However, models with an AICC score within 2 points are 

arbitrarily considered indistinguishable. 

Perpendicular distances from the jackrabbit locations to the spotlight survey route 

(calculated in ArcGIS), for all nights in a given month and year were used to calculate a 

detection function in program DISTANCE (Thomas et al. 2009).  From this detection 

function, DISTANCE calculates the effective strip width, μ, the distance from the transect at 

which the number of animals observed beyond that distance is equal to the number that go 

undetected within that distance.  Therefore, the total number of animals observed, n, is equal 

to the total number of animals, both seen and unseen, within the effective strip width.  These 

parameters were used to calculate the population density, D, for each night separately.  

D = n/2μL 
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L is the distance of the transect route.  Density estimates were used to create population 

estimates for each night and the estimates were then averaged across all survey nights within 

a month. We compared the results of our surveys and previous surveys conducted using the 

same equipment and methods (Fairbanks, unpublished data) in 2006 and 2007 using a 

Wilcoxon Rank Sum test in program R (Team 2009). Only fall estimates (September and 

October) were compared across the 4 years to maintain consistency, as all young of the year 

were easily observable by the fall.   

RESULTS 

Between September 2008 and September 2009, we captured and collared 13 

jackrabbits (9M, 4F).  A total of 450 locations were recorded and the average number of 

points used to create seasonal home ranges was 23.68 ± 10.42 (range: 6-39).  We estimated 

seasonal home ranges for 8 jackrabbits (4M, 4F). The remaining 5 jackrabbits were captured 

in late summer 2009 as the growth season was ending so adequate information for home 

range delineation could not be collected. We used only 6 points to create a home range for a 

diseased jackrabbit that did not move far from a particular corn field.  The exact location of 

this jackrabbit could not always be acquired due to signal bounce-back from the corn, but it 

was evident that the same corn field was being used.  In the pre-harvest season, home ranges 

were calculated using a low number of locations (<20). The pre-harvest season was the 

shortest season in the study and jackrabbits were captured beginning 10 September 2008 

through 30 October 2008, reducing the possible number of locations that could be acquired in 

that season.  

The median size of jackrabbit home ranges expanded following the corn harvest (Fig. 

2). The median home range size increased 287% from the pre-harvest to post-harvest season. 
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However, the difference between the pre-harvest and post-harvest home ranges was not 

statistically significant (Mann Whitney W=30, p = 0.17, n = 12).  In the breeding season, the 

median home range size increased 27% from the post-harvest size and finally decreased 46% 

from the breeding to growth seasons.  Median home range size in the breeding season was 

significantly greater than that in the pre-harvest season (W=23, p = 0.04, n = 10).   

At the beginning of the post-harvest season, males moved off the Research Farm, 

incorporating large portions of harvested corn fields on private lands into their home ranges.  

The females expanded their home ranges to include adjacent harvested corn fields but 

remained primarily on the Research Farm.  Male home ranges were not significantly different 

in size from female home ranges in the pre-harvest (W = 3, p = 0.80, n = 2F, 4M), post-

harvest (W = 2, p = 0.53, n = 4F, 2M), breeding (W = 1, p = 1, n = 3F, 1M), or growth season 

(W = 0, p = 0.67, n = 2F, 1 M), however, sample sizes were small for these comparisons. 

 The average percent VOI between an individual’s pre-harvest and post-harvest home 

ranges was 71%.  This decreased to 39% and 31% in the post-harvest-breeding and breeding-

growth season transitions, respectively, suggesting shifts in individual home ranges between 

seasons. VOI varied between individuals across the seasons, as well.  There was a large 

decrease in VOI between males from the pre-harvest to post-harvest season, when the males 

moved off the main Research Farm (Fig 3).  There was also a large increase in VOI between 

males and females from the post-harvest to breeding season.  However, we did not detect any 

statistically significant differences in VOI across the seasons (Kruskal-Wallis H = 3.13, df = 

3, p = 0.37).   VOI across the groups of males overlapping with males, females overlapping 

with females, and males overlapping females were significantly different in the pre-harvest 
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((Kruskal-Wallis H = 11.36 df = 2, p ˂ 0.001), post-harvest (Kruskal-Wallis H=16.07, df = 2, 

p ˂0.001), and the breeding seasons (Kruskal-Wallis H = 10.11, df = 1, p = 0.001).     

Male and female jackrabbits increased their use of corn fields in the post-harvest and 

breeding seasons (Fig 4). Field type use was not significantly different between males and 

females in the pre-harvest (Х² = 5.23, df = 4, p = 0.26), post-harvest (Х² = 2.13, df = 4, p = 

0.71), breeding (Х ²= 0.92, df = 3, p = 0.82), or growth season (Х² = 1.18, df = 4, p = 0.88).  

Field type use did not differ significantly between day and night in the pre-harvest (Х² = 

6.98, df = 3, p = 0.07), post-harvest (Х² = 3.51, df = 4, p = 0.48), or breeding season 

(Х²=3.14, df = 3, p = 0.37).  However, the jackrabbits used field types significantly 

differently in day versus night during the growth season (Х² = 20.30, df = 4, p < 0.001). 

Soybean fields were used significantly more in the day versus night, during the growth 

season (Bonferroni Z = 2.83, p = 0.002).   

Jackrabbits displayed habitat selection in the pre-harvest (X² = 63.70, df = 3, p ˂ 

0.0001), post-harvest (X² = 22.89, df = 4, p ˂ 0.0001), and growth seasons (X² = 15.27, df = 

4, p ˂ 0.01).  However, jackrabbits did not appear to exhibit habitat selection during the 

breeding season (X² = 1.54, df = 3, p = 0.67). Jackrabbits selected against corn fields 

(Bonferroni Z = 7.32, p ˂ 0.001) and selected for soy bean fields (Bonferroni Z = 2.29, p = 

0.01) and oat fields (Bonferroni Z = 5.32, p ˂ 0.001) in the pre-harvest season.  In the post-

harvest season, jackrabbits selected against corn fields (Bonferroni Z = 3.72, p ˂ 0.001) and 

selected for oat fields (Bonferroni Z = 1.23, p = 0.01) and alfalfa fields (z = 2.98, p = 0.001).  

In the growth season, jackrabbits selected against corn fields (Bonferroni Z = 3.00, p = 

0.001) and selected for alfalfa fields (Bonferroni Z = 2.4, p ˂0.01).   
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Radio-tracking data from all 13 individuals captured during the study period were 

used to estimate DSR.  A model representing constant mortality was the most supported 

model (Table 1) of jackrabbit DSR on the Research Farm.  All other models, except the 

quadratic model, were comparable (within 2 ∆AIC values), however, the constant model 

contained the only statistically significant parameter coefficient (β).  Though other models 

were comparable in ∆AIC values, the factor they were modeling did not significantly 

represent jackrabbit survival rates.  This lack of significance may be due to small sample 

size.  DSR in the constant survival model was 0.997 (95% CI 0.993- 0.999) with a 0.330 

(95% CI 0.103-0.677) probability of surviving the 385-day study period.     

The number of jackrabbits spotted per survey night in 2008 and 2009 varied from 5-

33 individuals. The largest group of jackrabbits observed consisted of 8 individuals (average 

1.36 ± 0.87 jackrabbits, with groups greater than 3 being very rare).  We detected an overall 

declining trend across years in the population size on the Research Farm (Fig. 5).   

 

DISCUSSION 

  Due to the dramatic conversion of historic prairie to row crops, white-tailed 

jackrabbits can be found living in corn dominated landscapes in Iowa.  Previous studies have 

shown that jackrabbits maintain smaller home ranges in agricultural landscapes than in 

grasslands (Donoho 1972, Schaible 2007).  Annual home ranges for white-tailed jackrabbits 

in South Dakota’s agricultural fields were estimated to be less than half the size of home 

ranges in grasslands (0.61 km² and 0.88 km² versus 2.00 km², Schaible 2007).  The potential 

for high quality food and shelter in agricultural land was suggested as a cause for smaller 

home ranges (Schaible 2007).  Similar-sized grassland home ranges (2.59 km²) were seen in 
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Colorado grasslands during the breeding season, although these estimates did not distinguish 

black-tailed jackrabbit (Lepus californicus) from white-tailed jackrabbit home ranges 

(Donoho 1972).  Small seasonal home ranges (0.21 km²) have also been reported in an 

agricultural landscape for the European hare (Ruhe and Hohmann 2004). Harvest of crops 

did not change home range size of these hares, however, the crops being cultivated in these 

fields were predominately cereals and sugar beets, which differ structurally from corn fields, 

and so may affect hare behavior differently.  During the pre-harvest and growth seasons, the 

jackrabbits in our study had a median of 0.32 km² and 0.73 km² home ranges, respectively, 

which are comparable in size to those of South Dakota jackrabbits in agricultural land.  

However, median post-harvest and breeding home ranges were 1.24 km² and 1.58 km², 

slightly smaller than those observed in grassland habitats in South Dakota and Colorado.  

Hares typically respond to seasonal changes in their habitat by changing their patterns of 

space use, with shorter field types being used more in winter months or cores of home ranges 

shifting following harvest (Chapuis 1990; Marboutin and Aebischer 1996; Reitz and Leoanrd 

1994; Tapper and Barnes 1986). The seasonal changes in home range size in our study may 

be related to either the striking changes in structure on the landscape following harvest when 

tall corn is reduced to stubble, the seasonal differences in food availability, or the 

reproductive strategies of the sexes.      

 Iowa winters are harsh, with mean daily temperatures ranging from approximately -3 ̊  

C to -11 ̊  C between December and February (National Climatic Data Center).   In these 

conditions, it is expected that resources would be limited and cause jackrabbits to expand 

their home ranges to find forage. This is unlikely on the Research Farm, however, as waste 

corn and hay are found all winter in great supply.  Waste corn is collected in a central 
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location on the Research Farm where aggregations of jackrabbits can be observed feeding on 

winter nights.  Shifts in core areas of home ranges and increased size of home ranges among 

other small mammal species have been attributed to greater refuge availability (Lombardi et 

al. 2007) and older age (Hoset et al. 2008) rather than food availability and seasonal changes.   

 Age is generally a factor in reproduction. Jackrabbits on the Research Farm may have 

expanded their home ranges in search of potential mates for the breeding season (February-

May). Home ranges did increase in the breeding season but not nearly to the same degree as 

in the post-harvest season.  Post-harvest home range expansion occurred well before the 

breeding season and males’ testicles do not begin to descend until just before females 

become receptive in February to mid-March (Lim 1987, Rogowitz 1992).  Timing of home 

range expansion, therefore, does not appear to be consistent with breeding behavior.   

 The most likely explanation for the observed increase in home range size in the post-

harvest season is that corn fields were converted into suitable jackrabbit habitat by the corn 

harvest. The corn fields were used more by both sexes after the harvest than before the 

harvest.  Immediately following the conversion of these fields into suitable open habitat, we 

observed the expansion of home ranges and increased proportion of corn fields in home 

ranges.  This trend of increasing home range size following crop harvest has been seen in 

other species as well: European rabbits (Smith et al. 2004), white-tailed deer, Odocoileus 

virginianus (Vercauteren and Hygnstrom 1998).   European rabbits also decrease home range 

size with increasing population density (Ruhe and Hohmann 2004).  If the unharvested corn 

fields are indeed unsuitable habitat, then the home ranges observed during the pre-harvest 

season may have been artificially small due to high densities imposed by corn height. Home 

range studies of white-tailed jackrabbits have previously only calculated annual home ranges.  
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Data on seasonal home ranges for white-tailed jackrabbits in more natural, grassland habitats 

are needed for comparison to determine whether seasonal home range expansions occur in 

the absence of profound changes in vegetation structure resulting from crop harvest. 

In addition to increasing the size of their home ranges, male jackrabbits also 

decreased home range overlap with other males in the post-harvest season. This decrease in 

VOI after corn harvest may have been due to natal dispersal by males.  However, the age of 

animals at capture was unknown and most males did not survive long enough to determine if 

their post-harvest home ranges represented permanent shifts away from pre-harvest home 

ranges.  Alternatively, the decrease in VOI might have been a result of males establishing 

territories, as in some other lagomorph species (Holley 1986; Monaghan and Metcalfe 1985). 

Voles also exhibit stronger territoriality in the breeding season, when home range overlap 

between males declines (Salvioni and Lidicker 1995).  Female jackrabbit home ranges also 

increased after corn harvest but home range overlap between females did not decrease to the 

same extent as between males, suggesting that if territoriality plays a factor in home range 

overlap it may be more prominent in males.  There were significant differences in median 

VOI among the males overlapping with males, females overlapping with females, and males 

overlapping with females within seasons. However, we expect the observed decrease in VOI 

among males may have been due to the lack of suitable habitat when the corn was tall, 

forcing jackrabbits to exist at artificially high densities in small/highly overlapping home 

ranges until corn harvest.  Male home ranges increased in size and home range overlap 

between males decreased immediately following harvest, suggesting that crop height limited 

field use. Only one radio-collared male survived from the beginning of the study to its 

completion, but this animal’s growth season home range was a highly condensed portion of 
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its breeding home range, and was surrounded by tall corn fields.  Although VOI among 

females did not decrease to a great extent following corn harvest, both sexes increased use of 

corn fields at that time, supporting a temporal aspect to suitability of corn fields as habitat for 

jackrabbits.   

The increase in VOI between the sexes in the breeding season might be attributed to 

jackrabbits searching for potential mates.  Mt. Graham red squirrels, Tamiasciurus 

hudsonicus grahamensis, increase home range overlap between the sexes during the breeding 

season (Koprowski et al. 2008), while other species maintain proportionally large home 

range overlaps between the sexes year-round : Alpine hare, Lepus timidus (Gamboni et al. 

2008); raccoon, Procyon lotor (Chamberlain and Leopold 2002).  These long-term home 

range overlaps have been potentially influenced by extended breeding behavior in summer.  

Environmental factors, such as timing of snow melt, available cover, and forage quality, 

likely limit the timing and duration of the breeding season in white-tailed jackrabbits 

(Rogowitz 1992).  In our study, both male and female jackrabbits expanded their home 

ranges and increased inter-sex home range overlap in conjunction with the breeding season. 

Male home ranges were not significantly larger than female home ranges. Although lack of 

significance may be due to small sample sizes, we would not expect a significant difference 

between male and female home ranges of a promiscuous species, as both sexes have equal 

opportunity for mating events (Chapman et al. 1982).  Unfortunately, there are no data on 

white-tailed jackrabbit breeding behavior in natural habitats in this region with which to 

compare our data.   Breeding behavior in the white-tailed jackrabbit has not been well 

studied, in general (James and Seabloom 1969; Rogowitz 1992), and more research is needed 
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to understand how reproduction may be shaped by dynamic habitat structure as occurs in 

agricultural landscapes.   

 Populations of several hare species have been declining across the world (Dingerkus 

and Montgomery 2002); alpine hare, (Newey et al. 2007);  European hare, (Smith et al. 

2005); snowshoe hare (Lepus americanus), (Keith et al. 1993; Keith et al. 1984); white-tailed 

jackrabbit (Kline 1963; this study).  These declines have largely been attributed to three main 

causes: habitat degradation, disease, and predation.  All but one mortality of radio-collared 

jackrabbits, in this study, were attributed to coyote predation.  In small, isolated jackrabbit 

populations, predation may be a significant contributor to further decline of jackrabbits in 

Iowa.  Different forms of mortality may be additive in smaller populations (Smart et al. 

2010).  While there is currently still a hunting season on white-tailed jackrabbits in Iowa, 

hunting is not permitted on the Research Farm.  Hunting may not account for a large 

proportion of jackrabbit mortality in the rest of the state either as the bag limits have been 

lowered in recent years to 1 daily and 2 in possession.  Although reporting jackrabbit 

harvesting is not mandatory, no reports of harvested jackrabbits were recorded in 2009 when 

a request was submitted to licensed small game hunters.  Disease was observed in two radio-

collared individuals during the study period, one with a postmortem diagnosis of kidney 

disease and bacterial infection, and one that showed symptoms of illness, but was consumed 

by a coyote, preventing diagnosis.  Whether these occurrences of disease are rare is not 

known and further investigation into causes of mortality is needed to determine disease 

effects on this population.  A third, more likely, cause of decline is loss of suitable habitat 

due to agricultural intensification and increased corn planting.  Jackrabbits selected for 

shorter crop fields in the pre-harvest, post-harvest, and growth seasons and selected against 
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corn fields in the pre-harvest, post-harvest and growth seasons.  No habitat selection was 

detected during the breeding season when the landscape becomes more homogenous with all 

fields being barren or reduced to stubble early in the season and all fields having only short 

crop shoots later in the season.  The Research Farm has had relatively stable corn plantings in 

the past 10 years (Mike Fiscus, Research Farm Manager, personal comm.), although there is 

an overall trend of increased acres planted to corn in Iowa.  It has been argued that similar 

changes in agricultural habitats have contributed to the population declines of European hares 

in the past decades (Boag and Tapper 1992; Hansen 1992; Ruhe 1999).  These declines can 

further be exacerbated by susceptibility to genetic drift and inbreeding in small populations 

(Lacy 1997).   

 With the small number of radio-collared jackrabbits in this study, we were unable to 

detect an impact of daily minimum temperature, season, or sex on survival rates.  These 

factors may prove to be statistically significant with larger sample sizes.  The annual survival 

for our population was greater than estimates from the only other published study of white-

tailed jackrabbit survival.  Rogowitz (1991) estimated annual survival to be 0.093 in 1985 

and 0.20 in 1986 (compared to 0.33 in our study) in southwestern Wyoming, where 

mountains, sagebrush steppe and high desert terrain cover the land.  The vast differences in 

habitat between our study and the Rogowitz study may affect survival via factors such as 

forage availability, predator density, and susceptibility to predation.  Our annual survival 

estimates lie between rates for other species of hares in natural (0.22)  and agricultural (0.51) 

habitats (Marboutin and Peroux 1995), respectively.  Estimates of hare survival appear to be 

higher in agricultural landscapes than in more natural habitats, potentially due to high quality 

forage and shelter in agricultural lands as suggested by Schaible (2007). Yet the population 



30 
 

 

on the Research Farm is declining.  The cause of this decline may not be directly linked to 

adult survival but may be affected by fecundity or juvenile survival, which can be affected by 

aspects of agricultural practices such as field size or types of crops being planted.  In addition 

to survival estimates, a better understanding of this species’ reproductive ecology in different 

habitats is needed for accurate population modeling.   

 Our study identified potential seasonal barriers to jackrabbit movement in Iowa’s 

intensively row-crop dominated landscape.   An important question to the conservation of 

this species is: Are jackrabbits able to expand their home ranges or disperse after corn 

harvest, to the extent that population connectivity is maintained, or are these populations 

isolated by expansive corn fields?  As jackrabbits increased their use of corn fields following 

harvest, the degree of connectivity between white-tailed jackrabbit populations may vary 

temporally, thus permeability of corn fields and the degree of isolation may vary with 

agricultural seasons.  Continued research should focus on timing of white-tailed jackrabbit 

dispersal relative to corn height.   
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Figure 1. The spotlighting transect route (red line) used to estimate population size on the Iowa State University 

Agronomy and Agricultural Engineering Research Farm in Boone County, Iowa, in late summer-early fall, 

2006 to 2009. The dots represent individuals or groups of jackrabbits sighted in September 2006.   
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Figure 2.  White-tailed jackrabbit home range sizes, based on 95% kernel isopleths, across 4 seasons (male and 

female home ranges combined).  Boxes represent 50% of the data and are intercepted by median values.  

Whiskers indicate 80% of the data.  The pre-harvest season spanned from September-October 2008, followed 

by the post-harvest season which covered November 2008-January 2009.  The breeding season began in 

February 2009 and ended in May 2009 and was followed by the growth season which spanned from June-

September 2009.  Harvest is used in reference to crops, particularly corn.   
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Figure 3. Volume of intersection (VOI) of white-tailed jackrabbit home ranges within and between the sexes.  

Seasons as in Figure 2.  
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Figure 4. Proportions of locations of A) males and B) females in the available field types across the seasons.  

See Figure 2 for season dates. The number of locations used for comparisons varied across the seasons: pre-

harvest, n = 43M, 37 F locations; post-harvest, n = 42M, 89F; breeding, n = 46M, 96F; growth, n = 77M, 73F.  

  

 



39 
 

 

Table 1.  Models of daily survival rate tested for jackrabbits on the ISU Research Farm September 2008-

September 2009.  Constant model: constant survival over time; Min Temp: survival is related to daily minimum 

temperature as energetic constraints may vary with temperature; Linear model: survival decreases in a linear 

fashion; Breeding model: survival differs in the breeding season from the rest of the year; Sex model: difference 

in survival of the sexes; Harvest model: survival after corn harvest, the post-harvest and breeding seasons 

combined, differs from the rest of the year; Quadratic model: survival increases with time until a certain point at 

which it drops off. A seasonal model including all four seasons was not tested due to lack of data.   

 

 

 

 

 

 

 

Model AICc 
Delta 
AICc 

AICc 
Weights 

Model 
Likelihood K Deviance 

Constant  60.53 0.00 0.31 1.00 1 58.52 

Min. Temp  62.08 1.55 0.14 0.46 2 58.07 

Linear 62.28 1.75 0.13 0.42 2 58.27 

Breeding 62.31 1.78 0.13 0.41 2 58.31 

Sex 62.50 1.98 0.15 0.37 2 58.50 

Harvest 62.52 1.99 0.11 0.37 2 58.52 

Quadratic 63.62 3.10 0.07 0.21 3 57.61 
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Figure 5.  Fall population estimates on the ISU Research Farm between 2006 and 2009 with standard 

deviations.  Bars with different letters are significantly different (Mann-Whitney U, p < 0.05).   
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CHAPTER 3: GENETIC STRUCTURE OF WHITE-TAILED JACKRABBITS IN AN 
AGRICULTURALLY DOMINATED LANDSCAPE 

 
A paper to be submitted to Conservation Genetics  

 
Irma Tapia, Julie Blanchong and W. Sue Fairbanks 

 
ABSTRACT 

 
 Agricultural intensification has reduced availability of natural grassland habitats in 

the midwestern U.S. and fragmented remnant patches.  As grassland habitats become less 

available and more discontinuous, remnant wildlife populations may exhibit a loss of genetic 

diversity and connectivity.  We investigated the effects of fragmentation on the genetic 

structure and diversity of a grassland adapted species, the white-tailed jackrabbit (Lepus 

townsendii), in the midwestern states of Iowa and South Dakota.  Our population genetic 

structure analyses suggested there were two jackrabbit populations; one central Iowa 

population and one population consisting of northwestern Iowa and South Dakota 

jackrabbits. These populations were moderately genetically differentiated (FST = 0.06) and 

exhibited low recent migration rates (0.01-0.04).  Potential barriers to gene flow among these 

jackrabbit populations include highways, agricultural fields, and physical distance.   

 
 

INTRODUCTION 
 

 Fragmentation of natural habitats has become a vital issue in wildlife conservation, 

having serious negative impacts on native wildlife, including genetic isolation.  As suitable 

habitat decreases, a population’s size may decrease and its spatial seperation to other 

populations may increase.  Small fragmented populations are more difficult to find by 

dispersers reducing gene flow and leading to a loss of genetic diversity (Garner et al. 2005; 
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Lacy 1997).   Fragmentation can isolate small remnant populations, increasing their risk of 

local extinction due to loss of genetic variation, to increased susceptibility to stochastic 

demographic or environmental variability, or a combination of these factors (Frankham 2005; 

Laikre et al. 2009; Templeton et al. 1990).  Metapopulations, or subpopulations existing in 

discrete habitat patches that interact by means of immigration and emigration, can alleviate 

some of these effects.  Occasional exchange of individuals among remnant populations can 

mitigate the negative effects of fragmentation by “rescuing” declining populations or 

recolonizing vacant patches via immigration of animals that serve to increase a remnant’s 

genetic diversity (Hanski and Gaggiotti 2004).  However, dispersal among habitat patches 

depends on the matrix habitat (intervening unsuitable landcover) and a species’ 

willingness/ability to cross it (Haddad et al. 2003).   

 The issues surrounding population fragmentation may be especially important in the 

midwestern U.S. where agricultural intensification, the increase in cultivated land and field 

size for the maximum output of crops, including monoculture plantings (primarily corn and 

soybeans), has reduced the availability of natural habitats and increased fragmentation 

(Zorher 2006).  Agricultural fields may increase isolation of remnant habitat patches as they 

may be perceived as matrix habitat with limited permeability by some wildlife.  For example, 

bobcats (Lynx rufus) in Iowa incorporate < 3% of agricultural land in their home ranges and 

generally avoid areas with large proportions of row crop agriculture (Tucker et al. 2008).  

Further, bobolinks (Dolichonyx oryzivorus) using grassland edge habitat adjacent to 

agricultural fields, in Iowa, did not include the fields in their territories but used them as 

boundaries to territories (Fletcher and Koford 2003).   
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 The landscape of the midwestern U.S. has changed drastically with agricultural 

intensification.  This change is more prominent in some states than in others.  Tall-grass 

prairies once dominated over 60% of Iowa’s land. By the turn of the 21st century, historic 

prairie had been diminished to a mere 0.1% of its historic range (Zorher 2006) being replaced 

by expansive corn fields. In the 1950’s, approximately 40% of South Dakota’s land was 

considered cropland and that has not markedly changed in over 50 years (USDA), Census of 

Agriculture).  However, as the demand for corn for biofuel increases, acres planted to corn 

are expected to increase in all regions, especially in the Corn Belt and Northern Plains, by 

2016 (Heisey 2009). As portions of remaining natural habitats are converted to agriculture, 

the persistence of grassland adapted populations will likely be threatened if there is reduced 

dispersal/gene flow between suitable habitat patches that are separated by increasingly larger 

fields of potentially unsuitable corn habitat.   

  The white-tailed jackrabbit, Lepus townsendii, is a model species in which to study 

the impacts of fragmentation, due to agricultural intensification, on genetic diversity and 

genetic structure.  The historic range of white-tailed jackrabbits extended only as far east as 

northwest Iowa (Lim 1987).  When tall-grass prairies began to be replaced with diverse, 

small fields including short grain crops over 150 years ago, the landscape became more 

suitable for this short-grassland adapted species, allowing it to expand its range across Iowa, 

and even into Wisconsin, Illinois, and Missouri (Lim 1987).  However, white-tailed 

jackrabbits have more recently been extirpated from Illinois and Missouri and are considered 

a Species of Greatest Conservation Need in Wisconsin. Currently, white-tailed jackrabbits 

are also considered a Species of Greatest Conservation Need in Iowa (Zorher 2006). 

Agricultural practices, in Iowa, have shifted to planting row crops (e.g. corn and soybeans) 
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that now cover 60% of the state’s land, greatly reducing and fragmenting suitable jackrabbit 

habitat.    The lack of suitable jackrabbit habitat and its fragmentation may be at least 

partially responsible for apparent reductions in jackrabbit numbers across the state.  

According to the Iowa Department of Natural Resources (IDNR), data from August roadside 

surveys conducted from 1962 to 2007 (Bogenshutz et al. 2007), there has been a considerable 

decline in jackrabbits across Iowa with a high of ~1 jackrabbit observed per 78 km stretch of 

road in 1964, 0 jackrabbits observed during the surveys in 2008, and 1 jackrabbit observed in 

the state in 2009 (Todd Bogenshutz, personal comm.).  This species is still found in pockets 

of habitat in central and northwest Iowa, generally on small farms that still plant shorter 

crops such as alfalfa, oats and wheat and at airports where large areas of grass surrounding 

landing strips are regularly mowed (Fairbanks, unpublished data; E. Colboth, USDA-APHIS 

Wildlife Services, pers. commun.).   

 In general, little is known about the white-tailed jackrabbit across its range, which 

spans from Iowa west to Washington and southern Canada south to northern New Mexico 

(Lim 1967).  Further, no published data currently exist on the genetic diversity or structure of 

the species.  Dispersal patterns of this species are also unknown. Relative to Iowa, white-

tailed jackrabbits are more abundant west of the Missouri River, including South Dakota 

(Schaible 2007).  Genetic diversity and population structure may vary in white-tailed 

jackrabbit populations that occur at the periphery of their range in Iowa compared to those 

populations that are more continuously distributed in less agriculturally fragmented areas in 

the core of their range, such as in South Dakota, due to fluctuating environmental conditions 

as has been seen in the chukar partridge, Alectoris chukar (Kark et al. 2008).  Fluctuating 

environmental conditions can include suitable habitat availability, density of con-specifics, 
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and successful migration that shift from core to peripheral populations and influence patterns 

of genetic diversity and connectivity.  The authors recommend sampling from peripheral, 

sub-peripheral, and core populations in order to clearly identify patterns of genetic diversity 

across a species range.  Although there is an ever-growing body of literature on the effects of 

fragmentation on genetic diversity and connectivity in wildlife, the effects on gene flow of 

fragmentation due to agricultural intensification have not been well documented in mammals.  

Fragmentation due to agriculture can vary in its effects as agricultural practices change the 

permeability of the landscape on a seasonal basis.   This seasonal change in permeability can 

affect timing and success of dispersal, which can shape patterns of genetic diversity and 

structure among populations.  

In this study we investigated population genetic diversity and structure of a grassland-

adapted species, the white-tailed jackrabbit, across a portion of its range using bi-parentally 

inherited microsatellite markers.   We sampled individuals from the eastern periphery of the 

white-tailed jackrabbit’s range in central Iowa, from the sub-periphery of its range in 

northwest Iowa, and core areas of its range in South Dakota and Montana.  The objectives of 

this study were to 1) quantify and compare genetic diversity in Iowa and South Dakota 

populations of white-tailed jackrabbits, 2) quantify the number of genetically distinct 

populations in our sample, and 3) characterize spatial genetic structure.  We hypothesized 

that genetic diversity would be lower in white-tailed jackrabbits in Iowa relative to South 

Dakota and that each regional sampling area (central Iowa, northwest Iowa, South Dakota 

and Montana) would be a distinct genetic population due to limited movement across matrix 

habitat imposed by fragmentation, and that spatial genetic structure would follow an 

isolation-by-distance pattern. 
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                                                      METHODS 

 We collected tissue samples in Iowa from live-captured jackrabbits on the Iowa State 

University Agronomy and Agricultural Engineering Research Farm (Research Farm) in 

Boone County, Iowa (as described in Ch. 2) and from road-killed samples acquired 

opportunistically by the Iowa Department of Natural Resources and County Conservation 

Boards.   Iowa samples came from central counties (Boone, Marshall, and Polk) and 

northwestern counties (Clay, Dickinson, Emmet, Lyon, O’Brien, Osceola, and Pocahontas).  

Tissue samples from road-killed and harvested white-tailed jackrabbits across South Dakota 

were obtained with the aid of the South Dakota Game, Fish, and Parks Department and 

Charles Dieter of South Dakota State University.   We also collected 7 samples from 

harvested jackrabbits in Montana.  We obtained a total of 113 samples from the three states 

(Fig. 1A).  UTM coordinates were acquired for point locations of most samples, although a 

small portion of sample locations could only be identified to the county level.  For these 

samples, UTM coordinates for the central point of their respective counties were assigned.  

Based on the locations from which our samples were collected, we grouped them into 4 

putative white-tailed jackrabbit populations: central Iowa, northwest Iowa, South Dakota and 

Montana.  All samples were collected between September 2008 and January 2010 and stored 

in a -80ºF freezer until DNA extractions could be performed.   

 We extracted DNA from ear, tongue or liver tissues using Qiagen DNEasy extraction 

kits.   Eleven genetic markers (microsatellites) developed for the European rabbit, 

Oryctolagus cuniculus, were optimized to amplify L. townsendii DNA : sol03, sol08, sol28, 

sol30 (Rico et al. 1994), sol33, sol44 (Surridge et al. 1997), sat02, sat03, sat12, sat13, sat16 

(Mougel et al. 1997).  Microsatellites are presumably neutral fragments of bi-parentally 
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inherited DNA made up of 2-6 nucleotide repeats.  Each distinct repeat length is considered a 

respective allele. Microsatellites tend to be highly polymorphic and have high mutation rates.  

Due to their high level of allelic diversity, they can be very informative about a population’s 

genetic diversity and structure.  Polymerase chain reaction (PCR) products were sent to the 

Iowa State University DNA Facility where genotypes were visualized on an ABI 3730 

Genetic Analyzer.  We determined genotypes and allele sizes from peaks using 

PeakScanner© v.1.0 software.   

 Quality control measures were put in place to reduce genotype scoring errors.  First, 

all plates of PCR products (96 samples) submitted to the DNA facility for genotype 

visualization included 4 known samples per locus; the number of known samples was 

prorated for plates that were not full.  Known samples were established as individual samples 

that were analyzed during optimization more than 5 times and provided consistent genotypes.   

Genotypes were scored by two people and any samples with inconsistencies in scoring were 

submitted for genotyping again.   We genotyped 10% of homozygous individuals a second 

time to verify that only one allele amplified.   

We screened genotype data for null alleles, allelic drop-out and allelic stuttering using 

the program MICRO-CHECKER version 2.2.3 (Van Oosterhout et al. 2004).  Null alleles are 

alleles that fail to amplify due to mutations at the primer binding site.  Allelic drop-out refers 

to alleles that fail to amplify due to sampling errors such as low quality or quantity of DNA.  

Allelic stuttering occurs when minor products are produced that are within a few repeat units 

of the main allele.  The presence of these genotypic inconsistencies causes scoring errors 

which may lead to deviations from Hardy-Weinberg equilibrium (HWE).  Deviations from 

HWE can also be detected in the case of true homozygosity or heterozygosity excess.  A 
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population is in HWE when allele frequencies and genotype frequencies do not change from 

generation to generation due to the assumptions that mating is random, natural selection is 

not acting on the loci being investigated, mutation and migration do not occur, and the 

population is infinitely large. HWE is often a basic assumption in genetic analyses and was 

so in our analyses of F-statistics and Bayesian clustering.  Violation of the assumption of 

HWE may reduce reliability of the results of analyses that assume HWE.  Null alleles and 

allelic drop-out will decrease the observed heterozygosity and will lead to an underestimation 

of genetic diversity, an overestimation of population differentiation, and an overestimation of 

the inbreeding coefficient. Linkage equilibrium was also an important assumption in our 

analysis of migration rates.  Linkage equilibrium occurs when the genotypes of loci are 

independent of one another.  If two or more loci are linked, their dependency can bias results.      

We tested for deviations from HWE and linkage equilibrium in our populations using 

a Markov chain estimator with 10,000 dememorizations steps, 100 batches and 10,000 

iterations per batch in GENEPOP version 4.0.10 (Raymond and Rousset 1995). We tested for 

these deviations in the global population (i.e., all samples collected), in our 4 putative 

populations, and in the populations identified as genetically distinct (refer to Bayesian 

clustering results). Significance levels were adjusted using the sequential Bonferroni 

correction for all statistical tests involving multiple comparisons (Rice 1989). We used 

GenAlEx 6.2 (Peakall and Smouse 2006) to calculate the number of distinct alleles (NA ), 

their frequencies, and observed (HO) and expected (HE) heterozygosities for each locus in 

each sampling region and in the identified genetically distinct populations.  Allelic richness 

(AR) was also calculated in program FSTAT (Goudet 2001). Allelic richness adjusts NA for 

sample size, which was necessary to compare allelic diversity across regions in which sample 
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sizes were uneven.  These measures served as descriptive parameters of genetic diversity 

within the four putative populations.   

 We quantified the degree of genetic differentiation among the four regions (central 

Iowa, northwest Iowa, South Dakota, and Montana) using F statistics in program FSTAT.  F 

statistics are measures of variance between different levels of groupings, in this case, 

individuals, subpopulations and populations.  For this study, we quantified FST, the measure 

of genetic differentiation between subpopulations (i.e., our four regions), in a pair-wise 

fashion and globally across the four regions.  FST values range from 0 to 1 with larger FST 

values signifying greater genetic differentiation.  FSTAT tests for significant deviations of 

the estimated FST from FST values obtained by randomizing multi-locus genotypes among 

populations. We also quantified FIS within each population.  FIS is the measure of 

differentiation between pairs of individuals within a subpopulation, also referred to as the 

inbreeding coefficient.  FIS values can range from -1 to 1 with negative values indicating 

higher levels of inbreeding than expected and positive values indicating lower levels of 

inbreeding than expected.  FSTAT tests for significant deviations of the estimated FIS from 

FIS values obtained by randomizing alleles among individuals within designated populations.  

 In order to identify if our 4 putative populations were genetically distinct populations, 

we used two methods of clustering algorithms.  In both of these methods, distinct populations 

are identified using the genetic data as opposed to the F-statistics approach to population 

differentiation where we defined the potential populations and evaluated how different they 

were.  Program STRUCTURE 2.3.2 (Falush et al. 2003; Pritchard et al. 2000) uses a Bayesian 

clustering method to identify the number of distinct genetic populations (K) while 

minimizing deviations from HWE and linkage equilibrium in each population.  We used a 
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burn-in of 100,000 steps followed by 1,000,000 Monte Carlo steps.  Initially, data were 

analyzed in structure with K=1-8 to assure that the number of populations was not 

underestimated.  Population assignment tests for higher K values revealed that the majority 

of individuals were assigning strongly to only a portion of the population clusters, meaning 

some populations were not being represented by any individuals in the sample, so the number 

of K was lowered for final analysis.  Final analysis included K=1-5, with 5 iterations for 

every value of K using the admixture and correlated allele models.  The admixture model 

assumes that ancestry for an individual may be spread between various populations and the 

correlated model assumes allele frequencies are likely to be similar among populations. Our 

jackrabbit populations should be well represented by these models as they were likely more 

genetically connected before habitat fragmentation.   We identified the most likely K using 

mean log likelihood (LnP(D)) as described in Pritchard et al. (2000) and  ∆K, which is a 

measure of the rate of change in (LnP(D)) between successive K values (Evanno et al. 2005). 

We further assessed the number of genetically distinct populations with an added 

geographic component in program GENELAND 2.9.2 (Guillot 2008; Guillot et al. 2005a; 

Guillot et al. 2005b; Guillot et al. 2008).  GENELAND uses a similar Bayesian clustering 

algorithm to STRUCTURE, but it has the added option to incorporate geographic locations of 

samples in the analysis, so that geographic proximity increases the likelihood that individuals 

will be assigned to the same population. In addition, GENELAND outputs a map outlining 

the boundaries of distinct genetic populations, which can be used to infer potential landscape 

features serving as barriers to gene flow.  Initial analyses were undertaken in GENELAND 

with the correlated model (as defined for the STRUCTURE analysis), however, it 

overestimated K and created ghost populations to which no individuals were assigned.  For 
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final analyses, we used the uncorrelated model with a burn-in of 10,000 steps followed by 

100,000 MCMC iterations (with thinning = 100).  We tested for K=1-5 and these runs were 

repeated 5 times, as in the STRUCTURE analysis.  We also calculated F-statistics for the 

genetically distinct populations identified in these analyses.   

We used three methods of population assignment to identify potential migrants in the 

populations identified by the clustering methods.  First, individual posterior probabilities of 

assignment to each population were averaged across the 5 iterations in STRUCTURE and used 

to identify potential migrants among these clusters.  We arbitrarily defined potential migrants 

and their offspring as individuals with assignment probabilities of <50% to the population 

from which they were collected.  We used program Geneclass2 (Piry et al. 1999) to identify 

first generation migrants and compute the individual probabilities of residence to the 

population from which they were sampled.  We used a Monte Carlo simulation described in 

Rannala and Mountain (1997) to create 10,000 individual genotypes randomized from our 

data.  Posterior probabilities of observed genotypes were then used to assign migrant or 

resident status.   Individuals whose genotypes had a probability α < 0.01 of being 

encountered in the population of origin, based on the simulated data, were defined as 

migrants.  Lastly, we quantified recent rates of migration between genetic populations and 

identified potential migrants using program BAYESASS 1.3 (Wilson and Rannala 2003).   

This program uses maximum likelihood theory to estimate migration rates, or the fraction of 

a population that is first or second generation migrants. We used 3,000,000 MCMC 

iterations, a burn-in of 1,500,000 steps, and a sampling frequency of 3000.  BAYESASS 

does not assume symmetrical migration among populations or HWE, but does assume 

linkage equilibrium among the markers.  Delta values were adjusted (delta p = 0.1, delta m = 
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0.05, delta F = 0.1) from default values to maximize Log likelihood values. Delta values 

represent the largest amount a respective parameter (p: allele frequencies; m: migration rates; 

F: inbreeding coefficient) can change in each iteration of the chain.  Migrants were defined as 

individuals with assignment probabilities of <50% to the population from which they were 

collected as in the STRUCTURE method.   

 To examine finer-scale genetic structure in white-tailed jackrabbit populations, we 

tested for correlations between genetic and geographic distance in jackrabbits sampled, 

excluding central Iowa animals. The central Iowa population was excluded from these 

analyses as >80% of these samples were collected within 2 km from each other and all were 

at least 109 km from the nearest northwest Iowa jackrabbit. Under isolation by distance 

(IBD) theory, it is expected that as geographic distance between pairs of individuals increases 

so should genetic distance due to limited dispersal distances of individuals.  We tested for 

IBD with Mantel tests in GenAlEx.   Mantel tests are regressions of matrices, in our case 

matrices of genetic and geographic distance. The matrices are subjected to random 

permutations of the columns and rows and their correlation coefficients determined. The 

significance of the regression is assessed by the proportion of correlation coefficients in the 

permuted matrices that are higher than that of the observed matrices.  If Mantel tests suggest 

a significantly positive correlation between genetic distance and geographic distance then 

IBD is supported.  

We further assessed spatial autocorrelation, the extent of correlation between genetic 

and geographic distances across various distance classes, in all but central Iowa jackrabbits, 

using GenAlEx. We calculated estimates of ‘r’, a measure of genetic similarity among pairs 

of jackrabbits over distance classes of 10, 40, 70, 100, 150, 200, 300, 500, 700, 1000, and 
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1450 km.  Geographic distance classes in all analyses were established to maximize 

geographic distances being examined and number of pair-wise comparisons being tested at 

each interval (Table 1).  We tested for significance of observed r values with 1000 bootstraps 

to create 95% confidence intervals around the mean value of r and 1000 permutations to 

create 95% confidence intervals around the null hypothesis of r = 0.  We also calculated 

estimates of Moran’s I and Rousset’s distance ‘a’ in program SPAGeDi 1.3 (Hardy and 

Vekemans 2002).  Moran’s I is a measure of correlation between genetic similarity and 

distance ranging from -1 to 1.  Positive values indicate that genetic similarity between pairs 

of individuals is higher than expected if no correlation existed and negative values indicate 

that pairs of individuals are less genetically similar than expected if no correlation existed. 

Rousset’s distance is a measure of genetic differentiation, or dissimilarity, between pairs of 

individuals.  We ran 20,000 permutations over the same geographic distance classes given 

above. Observed values that fell outside the 95% confidence intervals of the permuted values 

were significantly correlated with geographic distance.   

Jackrabbits were not sampled between central and northwest Iowa.   Due to our 

opportunistic sampling scheme, it is unclear whether or how many jackrabbits may occur 

between the two regions.  Taking into account this unknown and the recent decline in central 

Iowa jackrabbits (see Ch.2), we used program BOTTLENECK (Cornuet and Luikart 1996) to 

determine if the central Iowa population displayed a heterozygosity excess consistent with 

the occurrence of a population bottleneck.  Heterozygosity excess is expected after a 

bottleneck event as the steep drop in numbers of individuals will eliminate some proportion 

of the rare alleles that had been present in the population (Cornuet and Luikart 1996).  While 

the number of alleles decreases rapidly, the amount of heterozygosity in the population is 
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expected to decrease at a much slower rate.  If a population has recently undergone a 

bottleneck event, it should exhibit greater heterozygotsity than expected based on the number 

of alleles present in the population.  We used a  two-phased model of mutation (TPM) as it 

has been shown to be the most appropriate model for microsatellite data (Dirienzo et al. 

1994).  The TPM is a combination of the infinite alleles model and the stepwise mutation 

model.  The infinite alleles model assumes that each mutation produces a novel allele 

different from all existing alleles and the stepwise mutation model assumes that mutation 

occurs in one-step processes so that new alleles can only be either one step larger or smaller 

than an existing allele. We ran 1000  TPM iterations with 95% single-step mutations and a 

variance between 3-36% in 12 steps as recommended by Piry et al. (1999).  Wilcoxon 

signed-rank tests were used to test for significance of heterozygosity excess at each locus.  

We also tested for a second indicator of a population bottleneck, a shift from an L-shaped 

distribution in allele frequencies.  In a population at mutation-drift equilibrium, a large 

proportion of alleles should occur at low frequencies and the number should decrease sharply 

with increasing frequency providing a graphical L shape.   

 

RESULTS 
 

 We collected 28 white-tailed jackrabbit samples from central Iowa and 17 from 

northwest Iowa. There was a distinctive spatial gap (> 100 km) between regions sampled in 

Iowa (Fig.1B) that may be due to the absence of jackrabbits in this area or uneven effort or 

opportunity to collect road-killed animals in that area.  We acquired 60 samples from South 

Dakota and 7 from Montana.  There was also a distinctive spatial gap (434 km) between 

samples collected in South Dakota and Montana (Fig. 1A ) that is due to lack of sampling 
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effort in Montana.  We eliminated 3 South Dakota samples from the study as 2 were believed 

to be black-tailed jackrabbits (based on mtDNA data, unpublished) and 1 did not amplify 

across sufficient loci. Due to the small number of samples obtained from Montana, we 

conducted all analyses both with and without those individuals. We were able to optimize 8 

(Sol08, Sol28, Sol33, Sat2, Sat3, Sat12, Sat13, and Sat16) of the 11 microsatellites for 

amplification in white-tailed jackrabbits (Table 2).  We eliminated the remaining 3 

microsatellites (Sol03, Sol 30, and Sol44) from our study as we could not obtain reliable 

results from them.   

 Allelic drop out and stuttering were not detected in any of the 8 loci in any of the 

regions.  However, we detected a signal of null alleles in Sat16 in the central Iowa, northwest 

Iowa and South Dakota regions and in Sol28 and Sat13 in only the South Dakota region.  

Heterozygote deficiencies were detected in a similar pattern: Sat16 in central Iowa, northwest 

Iowa and South Dakota, Sol28 in central Iowa and South Dakota, and Sat13 in only South 

Dakota (Table 3).  Null alleles likely contributed to the observed heterozygote deficiencies 

across the regions.  Heterozygote deficiencies were also detected in Sol28, Sat13 and Sat16 

in the global population (p < 0.0001).   

 Diversity, both in terms of alleles and genotypes, was generally lower in central Iowa 

though the difference was not significant (Table 3).  We found a significant probability of 

linkage between Sol28 and Sat3 after Bonferonni adjustment (p < 0.001) when regional 

populations were assumed, but this linkage was no longer significant (p = 0.03) when a 

global population was assumed and Bonferonni corrections were made.  Further, Sol 28 and 

Sol08 were detected as significantly linked in the global population (p < 0.0001).  However, 

as our samples do not appear to consist of a single global population (refer to Bayesian 



56 
 

 

clustering results) linkage disequilibrium between Sol28 and Sol08 is less likely.  Because of 

the potential linkage disequilibrium between Sol28 and Sat3 when samples were analyzed at 

the regional level, we conducted analyses both with and without data from Sat3.  Results 

were not significantly affected by this exclusion, so only analyses including Sat3 are 

presented here.     

 The four regions, from which samples were collected and hypothesized to be distinct 

populations, displayed significant global differentiation from one another (Table 4, FST = 

0.05, 95% CI 0.03-0.07).  Central Iowa displayed significant differentiation, after Bonferonni 

correction, from northwest Iowa, South Dakota and Montana (p < 0.01 for each comparison) 

but none of the other regions displayed significant differentiation from each other.  Central 

Iowa, however, did not have a significantly lower inbreeding coefficient (FIS = 0.07, 95% CI 

-0.05 - 0.20) than northwest Iowa (FIS = 0.08, 95% CI -0.03 - 0.21) or South Dakota (FIS = 

0.17, 95% CI 0.03 - 0.31). As null alleles can lead to overestimation of FST, we re-calculated 

FST values in the program FreeNA (Chapuis and Estoup 2007) using 10,000 replicates.  This 

program uses the Dempster et al. (1977) method of estimating null allele frequencies to 

calculate FST  and has been shown to provide unbiased estimates of FST with low variance 

(Chapuis and Estoup 2007).  The Dempster et al. (1977) method of estimating null alleles 

uses a maximum likelihood EM algorithm to calculate estimates with incomplete data, in our 

case the estimates are of FST and we have incomplete genotypes due to null alleles.  FreeNA 

calculated slightly lower values of FST between regions with slightly narrower confidence 

intervals (Table 4).  However, the overall patterns remained the same such that significant 

differentiation was still detected between central Iowa and northwest Iowa, South Dakota, 

and Montana.  Null alleles likely also resulted in an underestimation of our FIS values, but as 
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these were not significant, adjustment would only increase values and would not result in 

evidence of excessive inbreeding in any region.   

 Bayesian clustering analyses conducted in STRUCTURE and GENELAND suggested 

the jackrabbits sampled from the 4 regions actually constituted 2 genetically discrete 

populations (Fig. 2), in which central Iowa jackrabbits represented one distinct population 

and northwest Iowa, South Dakota, and Montana together represented a second population 

(henceforth referred to as NISD).  We re-analyzed the data in both STRUCTURE and 

GENELAND, first without Montana individuals and second with only Iowa individuals.  We 

removed the Montana samples due to low sample size and analyzed only Iowa samples to 

assess whether a signal of two populations would still be detected.  In both cases, we verified 

that central Iowa was a genetically distinct population (Table 5).   

 We tested the discrete populations identified by STRUCTURE and GENELAND for 

deviations from HWE and the results were consistent with the global and regional tests.  

Heterozygote deficiencies were identified in Sol28 and Sat16 in both populations and also in 

Sat13 in the NISD population (p < 0.001).  Linkage disequilibrium remained significant 

between Sol28 and Sat3 (p <0.001).  We also re-analyzed F statistics using the populations 

identified by STRUCTURE and GENELAND.  Central Iowa showed significant differentiation 

(FST = 0.065, 95% CI 0.041-0.096, p = 0.05) from the NISD population.  This value was 

similar to that calculated in FreeNA adjusted for null alleles (FST = 0.060, 95% CI 0.040-

0.087).  The central Iowa population did not have a significantly lower inbreeding coefficient 

(FIS = 0.065, 95% CI -0.047-0.197) than the NISD population (FIS = 0.148, 95% CI 0.025-

0.294).    
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 Individuals identified as potential migrants were not consistent across the three 

methods of identification (Table 6).  We identified 3 potential migrants in the central Iowa 

population and 6 potential migrants in the NISD population based on assignment tests from 

STRUCTURE.  In Geneclass2, we identified 3 first generation migrants one of which was also 

assigned as a non-resident.  We identified 1 second generation migrant in BAYESASS.    

Only one jackrabbit, collected in central Iowa, was identified as a migrant in all three 

methods of population assignment, this individual was also assigned as a non-resident in 

Geneclass2. A migrant has a genotype with a low probability of occurrence within the 

population it was sampled, while a non-resident has a genotype with a low probability of 

having been in the population for more than one generation.  The jackrabbit we classified as 

a central Iowa resident that was assigned as a NISD migrant across all 3 analyses had higher 

probabilities of  migrant assignment than all but 2 individuals in the STRUCTURE method.  

Migration rates to and from the two populations calculated in BAYESASS were similar, with 

a rate of 0.038 (95% CI 0.003-0.098) from NISD into central Iowa and 0.011 (95% CI 

0.0003-0.040) from central Iowa to NISD.   These rates were within the 95% confidence 

interval for migration rates provided by BAYESASS for data on 2 populations that do not 

contain enough information to accurately calculate migration rates (0.008-0.325).  The 95% 

CI for our jackrabbit data, however, are much narrower in width and so provide some 

information that migration rates are low but, given that they overlap with the 95% CI for 

uninformative data, should be interpreted cautiously.   

 For our analyses of isolation by distance in the NISD population, a group of 28 South 

Dakota samples were eliminated from the analyses due to lack of confidence in spatial 

locations of these animals. We did not find evidence to support an overall pattern of isolation 
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by distance in the NISD population.  We found no significant correlation between genetic 

distance and linear (Fig 3A, r <0.01, p = 0.43) or log transformed geographic distance (Fig. 

3B, r = 0.04 p = 0.11).  We detected significant positive spatial autocorrelation among 

jackrabbits separated by up to 10 km with measures of r (Fig. 4, r = 0.05, p <0.01) and 

Moran’s I (Fig.5, I=0.08, p <0.001), which together suggest that jackrabbits within 10 km of 

each other were more genetically similar than expected and that genetic similarity is 

correlated to the distance separating them.  Significant positive spatial autocorrelation among 

jackrabbits was also detected between 40 km and 70 km using the measure Rousset’s a (Fig. 

6, a = 0.18, p = 0.02), signifying jackrabbits separated by 40-70 km are more genetically 

differentiated than expected.  Small sample sizes at some distance classes may have limited 

our ability to detect spatial autocorrelation at some scales.  We did not have adequate 

samples to evaluate spatial autocorrelation at finer-scale distance classes. We were unable to 

evaluate whether significant spatial autocorrelation occurred at distances smaller than 10 km 

or at distances between 10-40 km and 40-70 km.    

  We found no evidence of a bottleneck having recently occurred in the central Iowa 

jackrabbit population.  One-tailed P values for heterozygote excess across the 8 loci in the 

population ranged from 0.98 to 1.00.  Alleles did not deviate from an L-shaped distribution, 

across all levels of variance, typical of a population in mutation-drift equilibrium. Together 

these results suggest that the Central Iowa population did not experience a recent population 

bottleneck.   
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DISCUSSION 

 The white-tailed jackrabbit population in central Iowa is one of at least two 

populations still in existence in the state.  These populations may be separated by up to 100 

km of intervening corn and soybean fields.  We had hypothesized that genetic diversity 

would be significantly lower in white-tailed jackrabbits in Iowa relative to South Dakota due 

to Iowa’s fragmented landscape that is corn-dominated.  We detected lower, though non-

significant, levels of genetic diversity in the central Iowa jackrabbits than in the northern 

Iowa, South Dakota and Montana regions. However, we detected significant genetic 

differentiation between white-tailed jackrabbits in central Iowa and jackrabbits from 

northwest Iowa, South Dakota and Montana.  These findings can potentially be explained by: 

1) the spatial distance separating central Iowa from these other areas (100km), 2) barriers to 

gene flow limiting connectivity between central Iowa and these other areas (e.g., corn-based 

agriculture, highways), and/or 3) a population bottleneck having occurred in central Iowa.   

 We did not detect any evidence of a population bottleneck having recently occurred 

in the central Iowa population.  Therefore the lower levels of genetic diversity and significant 

differentiation of central Iowa white-tailed jackrabbits from northwest Iowa, South Dakota 

and Montana are likely due to low levels of gene flow rather than a population bottleneck.  

“Recent” is often referred to as 2Ne-4Ne generations, where Ne is the effective population 

size.  If the central Iowa population experienced a very recent bottleneck event, < 2Ne 

generations, the signal may not be easily detected (Piry et al. 1999).  Estimates of population 

size, using spotlight-line-transect methods, have indicated potentially significant declines in 

the central Iowa population in recent years with 43.78 ± 13.37 jackrabbits estimated in 2006 

and 18.46 ± 3.75 jackrabbits estimated in 2009 in an area of approximately 0.53 km² (see to 
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Ch. 2).  This decline in population size may be too recent to detect a population bottleneck 

with current methods or may be due to a more gradual decline of individuals over time as 

opposed to the rapid loss of individuals that define population bottlenecks.   

 One potential explanation for the significant genetic differentiation observed between 

Central Iowa and NISD jackrabbit populations may be that gene flow between these 

populations may be limited by low dispersal/migration rates due to high mortality rates 

caused by attempted highway crossings (approximately 50% of Iowa samples collected were 

road-killed).  The spatial gap between the central Iowa and NISD jackrabbit populations is 

intersected by 2 U.S. Highways (Fig. 1, HWY 30 and HWY 20), built over 70 years ago, that  

may also serve as barriers to gene flow.  Highway 30 is a four lane highway with moderate 

traffic that runs east to west along the north end of the Research Farm. During telemetry 

studies (Ch.2), jackrabbits were never observed on the north side of the highway.  Gene flow 

across highways has been documented in the pygmy rabbit, a much smaller (average weight 

398-462 g) and likely less mobile Leporid (Estes-Zumpf et al. 2010).   However, this species 

was documented crossing rural 2 lane highways characterized by low levels of traffic.  

Reduced movement and gene flow across larger, more heavily used roads has been 

documented in various other species: coyotes (Canis latrans) and lynx (Lynx rufus) (Riley et 

al. 2006); grizzly bears, Ursus arctos (Proctor et al. 2005); European frog, Rana temporaria 

(Reh and Seitz 1990); bank vole, Myodes glareolus (Gerlach and Musolf 2000).   In our 

study, the only individual identified as a migrant by all 3 assignment methods was a road-

killed jackrabbit collected on the north side of Highway 30 (Fig. 1B) that we labeled as a 

central Iowa jackrabbit, but that was identified as an NISD jackrabbit.   An explicit 
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examination of the effects of highways on movement among white-tailed jackrabbit 

populations remains to be explored. 

 As our opportunistic sampling approach failed to garner samples between northwest 

and central Iowa, the central Iowa white-tailed jackrabbit population may be physically 

separated from the NISD population by about 100 km. Although it is unclear from this study 

whether remnant white-tailed jackrabbit populations occur in these intervening areas, the 

bulk of this landscape consists of vast fields of corn.  The potential low permeability of this 

corn landscape may be responsible for reduced gene flow as has been demonstrated in pygmy 

rabbit (Brachylagus idahoensis) populations separated by agricultural fields (Estes-Zumpf et 

al. 2010).  Using both microsatellite and mtDNA data, greater levels of population 

differentiation were detected between populations of pygmy rabbits separated by increasing 

areas of agricultural fields than by highways or creeks.   It was unclear to what extent these 

fields were permeable to pygmy rabbits but it was suggested that agriculture might intensify 

isolation among these populations.  European hares have also been shown to alter movement 

patterns in response to agricultural practices by shifting cores of home ranges following 

harvest and shifting field types used on a seasonal basis (Chapuis 1990; Marboutin and 

Aebischer 1996; Reitz and Leoanrd 1994; Tapper and Barnes 1986).     Radio-telemetry data 

suggest white-tailed jackrabbits do not use corn fields in high frequencies, at least before 

harvest when the corn is tall (Ch. 2 of this study).  Given the avoidance of cornfields by 

jackrabbits, at least for part of the year, genetic differentiation between the remnant central 

Iowa population of white-tailed jackrabbits and the more continuously distributed animals in 

northwest Iowa, South Dakota and Montana may be due to expansive corn fields acting as a 

barrier to gene flow.  However, little is known about white-tailed jackrabbit dispersal, 
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whether timing of dispersal is related to corn harvest, and how these factors may affect gene 

flow.   

 Central Iowa jackrabbits currently occur at the eastern periphery of the species range.  

White-tailed jackrabbits have been extirpated from Missouri and Illinois and are listed as a 

species of greatest conservation need in Wisconsin and Iowa.  As dispersal distances of this 

species are unknown, it is unclear whether the >100-km distance separating the central Iowa 

and NISD populations would prevent gene flow between these populations even if corn fields 

were suitable jackrabbit habitat and highways were not an issue.  This possibility is perhaps 

supported by our detection of significant negative spatial autocorrelation between pairs of 

jackrabbits separated by 70 km in the NISD population.  Low gene flow between central 

Iowa and NISD jackrabbits may be mitigated by intervening patches of suitable habitat that 

may serve as stepping stones between the populations, but further investigation into the 

existence of such patches and jackrabbits populations in intervening areas is necessary.   

 Our results suggested that recent migration rates were low between central Iowa and 

NISD jackrabbit populations.  Across three methods of population assignments, only 1 

individual was consistently identified as a migrant, lending support to our conclusion that 

contemporary migration appears to be limited between these populations.  As the majority of 

central Iowa samples were collected within 2 km of each other and sample size was small, 

the samples may not be fully representative of the population, reducing reliability of 

estimates.  However, based on population size estimated over 2006-2009 on the Research 

Farm in central Iowa (see Ch. 2), we feel confident that we sampled a large and likely 

representative proportion of the population.   
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 The NISD jackrabbit population displayed weak spatial structure and we did not find 

evidence of a strong pattern of isolation by distance.  Spatial autocorrelation analyses 

suggested jackrabbits within 10 km were significantly more genetically similar than expected 

and could not be considered genetically independent. Various Leporid species have been 

demonstrated to be capable of dispersing 10 km or more.  Pygmy rabbits can disperse up to 

10-12 km (Estes-Zumpf and Rachlow 2009; Sanchez and Rachlow 2008).  European hares 

have been documented dispersing as far as 17 km (Bray et al. 2007) and snowshoe hares, 

Lepus americanus, as far as 16 km (Gillis and Krebs 1999).  A black-tailed jackrabbit, Lepus 

californicus, was recorded covering a distance of 45 km in approximately 4 months (French 

et al. 1965).  Fine-scale spatial structure could not be assessed within 10 km as opportunistic 

sampling limited the number of animals collected at distance < 10 km.  Therefore, we cannot 

evaluate whether significant positive spatial autocorrelation existed among jackrabbits 

separated by distances less than 10 km.  Further sampling of jackrabbits, at smaller spatial 

scales (between 0 and 40 km) could provide a more accurate estimate of the scale of spatial 

autocorrelation within the NISD white-tailed jackrabbit population.  This information could 

give us a better understanding of white-tailed jackrabbit dispersal distance limitations and 

whether the 100 km that may separate the central and northwest Iowa jackrabbits is too far 

for migration to connect these populations.   

 Connectivity of the central Iowa white-tailed jackrabbit population to the NISD 

population evaluated in our study appears to be limited.  Agricultural fields, e.g. corn fields, 

highways and distance between populations may all play a role in our observations that 

central Iowa white-tailed jackrabbits are significantly genetically differentiated from animals 

in northwest Iowa, South Dakota and Montana, where the species is more continuously 
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distributed.   Research into white-tailed jackrabbit dispersal patterns is needed to assess 

whether they are able to disperse over the distance and through the landscape features 

separating central Iowa and northwest Iowa, whether and where jackrabbits occur between 

these two regions, and whether potential suitable habitat patches between these areas exist.  

The avoidance of unharvested corn fields by jackrabbits has been documented (Ch.2), but the 

extent to which the agricultural expanse that separates these populations is permeable to 

white-tailed jackrabbits and whether that permeability varies after harvest of the fields alters 

structure of the landscape is unknown. With the expected increase in acres planted to corn 

across the Corn Belt (Heisey 2009), it is essential to identify the degree to which corn itself 

acts as a barrier to gene flow in white-tailed jackrabbit, and other Iowa wildlife, populations. 

To answer some of these unknowns, further genetic sampling of white-tailed jackrabbits in 

central Iowa and northwest Iowa should be conducted with special consideration to the 

geographic distance and the size and type of landscape features separating individuals.   
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Figure 1.  Samples collected from A) across the states of Iowa, South Dakota and Montana are represented with 

dots.  Individual dots may represent more than one jackrabbit sampled, n=28, 18, 57, and 7 in central Iowa, 

northwest Iowa, South Dakota and Montana, respectively. B)  Two major U.S. Highways intersect the spatial 

gap between central Iowa and northwest Iowa white-tailed jackrabbit populations.  The red star indicates the 

location of sample collection from a jackrabbit identified as a potential migrant from the NISD population to 

central Iowa across 3 methods of analysis.    
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Table 1.  The number of pair-wise comparisons analyzed within each distance class in the isolation by distance 

and spatial autocorrelation analyses.  A group of 28 samples were removed from the analyses due to lack of 

confidence in spatial data.   

 
Distance Class 10 40 70 100 150 200 300 500 700 1000 1450 
 

# of pair-wise 
comparisons 67 57 73 47 58 53 76 280 243 267 157 

 

 



 
 

 

 

 
Locus 

Buffer 
(10 uM) 

dNTPs 
(2mM) 

MgCl₂ 
(25 mM) 

Primers 
(10 uM) 

Taq  
(5 units/uL) H₂O 

DNA  
(20 ng/ul) Cycle 

Sol08 1.1 1.1 0.5 0.075 0.2 4.95 2 (94 ̊C-30 s/56 ̊C-30 s/72 C̊-30 s) (72 ̊  C-3 min) 

Sol28 2.0 0.75 --- 0.2 0.2 4.15 2.5 (95 ̊C-30 s/58 ̊C-30 s/72 C̊-30 s) 

Sol30 1.1 0.9 --- 0.2 0.2 4.4 3 (95 ̊C-30 s/58 ̊C-30 s/72 C̊-30 s) 

Sat2 1.1 0.9 --- 0.1 0.2 5.6 2 (94 ̊C-30 s/52 ̊C-30 s/72 C̊-30 s) (72 ̊  C-3 min) 

Sat3 1.1 0.9 0.2 0.15 0.2 4.8 2.5 
(94 ̊C-30 s/70↓60 ̊C-30 s/72 C̊-30 s)*10,  
( 94 ̊C̊-30 s/60  ̊C̊-30 s/72  ̊C̊-30 s)*20 

Sat12 1.1 0.9 0.5 0.075 0.2 4.15 3 (94 ̊C-30 s/50 C̊-30 s/72 C̊-30 s) 

Sat13 1.1 0.7 --- 0.1 0.2 5.3 2.5 (94 ̊C-30 s/56 ̊C-30 s/72 C̊-30 s) (72 ̊  C-3 min) 

Sat16 2.0 0.9 0.2 0.075 0.2 4.05 2.5 (94 ̊C-30 s/54 ̊C-30 s/72 C̊-30 s)  

71 

Table 2.  Final polymerase chain reaction protocols are given. Reagent volumes (uL) are given per sample and total reaction volumes were 10 uL, 

except for Sol 30 that was run with a total reaction volume of 13 uL.  Primer volumes are given for forward and reverse primers each. All PCRs 

were run for a total of 30 cycles, preceded by a 3 min step at the denaturation temperature, and 3 min extensions were added as shown below.   
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Table 3.  Measures of genetic diversity across the four regions sampled.  Totals for NA display the sum of 

distinct alleles across loci with number of private alleles in parentheses.  Total observed (HO) and expected (HE) 

heterozygosities are given for respective regions with SD.  Allelic richness (AR) and p-values for HWE tests are 

also displayed.  All loci were within HWE in the Montana region, although this may be due to small sample 

size.  * denotes a significant deviation from HWE after Bonferonni  correction with p<0.001. 

 

 

 
Central Iowa (n=28) Northwest Iowa (n=18) 

 
NA AR HO HE HWE NA AR HO HE HWE 

sol08 6 4.26 0.82 0.73 0.89 5 4.17 0.61 0.74 0.03 

sol28 8 4.55 0.64 0.69 *       7 5.17 0.65 0.69 0.32 

sol30 3 2.17 0.21 0.20 1.00 4 2.90 0.39 0.34 1.00 

sat02 9 6.02 0.79 0.83 0.29 11 7.76 0.89 0.89 0.65 

sat03 2 1.92 0.29 0.25 1.00 2 2.00 0.56 0.49 0.87 

sat12 9 6.15 0.82 0.82 0.51 8 5.57 0.83 0.81 0.73 

sat13 3 2.40 0.29 0.36 0.01 5 4.26 0.56 0.63 0.35 

sat16 7 5.03 0.43 0.71     *    8 6.10 0.50 0.82 *     

Total 
47 
(2) 

4.06 ± 
1.70 

0.54 ± 
0.09 

0.57 ± 
0.09 

 
50 (1) 

4.7 ± 
1.82 

0.62 ± 
0.06 

0.68 ± 
0.07 

 

 
South Dakota (n=57) Montana (n=7) 

 
NA AR HO HE HWE NA AR HO HE HWE 

sol08 13 6.42 0.79 0.84 0.09 5 5.00 0.86 0.78 0.88 

sol28 14 6.63 0.57 0.77 *        6 6.00 0.71 0.75 0.61 

sol30 5 2.76 0.44 0.42 0.77 3 3.00 0.57 0.58 0.67 

sat02 12 7.29 0.82 0.88 0.25 9 9.00 0.71 0.92 0.09 

sat03 3 2.12 0.47 0.48 0.48 2 2.00 0.29 0.53 0.29 

sat12 8 6.29 0.88 0.86 0.73 6 6.00 0.86 0.88 0.58 

sat13 6 3.79 0.46 0.63 *        3 3.00 0.43 0.54 0.44 

sat16 10 6.10 0.35 0.84 *        5 5.00 0.43 0.66 0.12 

Total 
71 
(16) 

5.17 ± 
1.97 

0.60 ± 
0.07 

0.72 ± 
0.06 

 
39 (2) 

4.88 
±2.23 

0.61 ± 
0.08 

0.71 ± 
0.05 
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Table 4.  Pairwise Fst values across the four regions sampled.  *denote statistical significance after Bonferroni 

corrections.  Fst values above the diagonal were calculated in FreeNA, adjusting for null alleles and values 

below the diagonal were calculated in Fstat with 95% CI in parentheses.   

 

 
Central Iowa Northwest Iowa South Dakota Montana 

Central 
Iowa 0 

*                           
0.058 (0.024-0.098) 

*                            
0.064 (0.045-0.089) 

*                         
0.092 (0.045-0.159) 

Northwest 
Iowa 

*   
0.066 (0.028-0.108) 0 0.006 (-0.002-0.014) 0.020 (-0.005-0.049) 

South 
Dakota 

*         
 0.069 (0.47-0.100) 0.006 (-0.003-0.014) 0 0.016 (-0.006-0.044) 

Montana 
*            
0.097 (0.042-0.171) 0.018 (-0.007-0.045) 0.011(-0.014-0.040) 0 
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Figure 2.  The A) LN P(D) and B) ∆K  values across K = 1-5 depicting optimal K=2 in STRUCTURE.  C) The 

density of MCMC iterations that produce K=1-5.  This image was produced by Geneland.  Density refers to the 

proportion of the 100,000 iterations. The 3 figures suggest our data represent 2 genetic populations.    
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Table 5. The mean LN P(D) values for K = 1-5 when analyses were conducted with all samples across the four 

regions sampled, without Montana samples, and with only Iowa samples in STRUCTURE.   

 

K No Montana Only Iowa All Samples 

1 -2627.87 -1058.15 -2876.7 

2 -2586.87 -1051.12 -2801.9 

3 -2611.80 -1145.26 -2879.52 

4 -2618.63 -1252.02 -2912.78 

5 -2784.45 -1202.70 -2887.27 
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Table 6. Potential migrants using the 3 methods of identification are shown.  For the STRUCTURE method, 

posterior probabilities of assignment to the central Iowa and NISD populations are shown.  For the Geneclass2 

method, the p-values of individuals being assigned as migrants (P migrant) and p-values of individuals being 

assigned as non- residents (P resident) are shown.  For this analysis, individuals 19 and 23 were significantly 

assigned as migrants, but also had high probabilities of being residents.  For the BAYESASS method, posterior 

probabilities of assignment as residents, first generation migrants (1st gen) and second generation migrants (2nd 

gen) are shown.  Jackrabbit 7 was the only animal consistently identified as a potential migrant.  

  

ID Sampling  
Region 

Structure Geneclass2 Bayesass 

  
Central IA NISD P migrant P resident Resident 1st gen 2nd gen 

7 Central  
Iowa 0.19 0.81 <0.001 0.001 11.21 32.73 56.06 

1 Central  
Iowa 0.41 0.59 

     

4 Northwest 
Iowa 0.90 0.097 

     

5 Northwest 
Iowa 0.66 0.34 

     

19 Northwest  
Iowa 

  
<0.01 

                    
      0.36 

   

21 South  
Dakota 0.67 0.33 

     

23 South  
Dakota 

  
0.02        0.78 

   

30 Northwest  
Iowa 0.86 0.14 

     

32 Central 
Iowa 0.49 0.51 

     

64 South 
Dakota 0.57 0.43 

     

83 South 
Dakota 0.83 0.17 
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Figure 3. Genetic distance is plotted over A)linear geographic distance and B) Natural log (LN) transformed 

geographic distance without GSD samples.   Equations for trendlines and R² values resulting from Mantel tests 

are shown.   
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Figure 4. Spatial autocorrelation among white-tailed jackrabbits at discrete distance classses with 95% confidence intervals shown in error bars and upper 

(U) and lower (L) 95% confidence intervals around the null hypothesis of r = 0 in dotted lines.  Significant values are shown with * at 10 km and 70 km.   
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Figure 5. Spatial autocorrelation using Moran’s I among white-tailed jackrabbits grouped into discrete distance classes  with 95% confidence intervals 

shown in error bars and upper (U) and lower (L) 95% confidence intervals around the null hypothesis of no relationship between Moran’s I and distance 

based on 20,000 distance permutations.  Significant values are shown with * at 10 km and 70 km.   
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Figure 6. Rousset’s Distance ‘a’ among white-tailed jackrabbits grouped into discrete distance classes with 95% confidence intervals shown in error bars and 

upper (U) and lower (L) 95% confidence intervals of the null hypothesis of no relationship between a and distance based on 20,000 distance permutations.  

Significant values are shown with * at 10 km and 70 km.   
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CHAPTER 4: GENERAL CONCLUSIONS 
 

 White-tailed jackrabbit populations persist in central Iowa and northwest Iowa but 

these regions are separated by expansive corn fields, highways, and perhaps a distance of 

over 100 km.  My data suggest corn fields are unsuitable habitat for jackrabbits, although 

there is a temporal aspect in relation to corn harvest.  Further, my data suggest that central 

Iowa jackrabbits constitute a distinct population, which is declining. Agricultural 

intensification appears to have detrimental effects on central Iowa’s white-tailed jackrabbit 

population by limiting suitable habitat and potentially increasing genetic isolation.   

  Jackrabbits increased their use of corn fields following harvest in the fall and 

subsequently decreased use when corn shoots began to gain height in summer the following 

year.  They selected against corn fields in all seasons but the breeding season.  Although corn 

fields appear to be unsuitable jackrabbit habitat, habitat suitability is not as dichotomous as 

once thought.  While habitat was once classified as either strictly suitable or strictly 

unsuitable (i.e. matrix), more current research is focusing on suitability as a continuum.  This 

range of suitability can vary with landscape composition, including vegetation cover, 

topography, and water sources and species ecology including habitat requirements and 

species size (Fahrig and Merriam 1994; Rosenberg et al. 1997; Taylor et al. 1993).  

Landscape composition can alter the permeability, or ease by which an animal can move 

through a habitat.  Further, the permeability of the “matrix” habitat can vary temporally and 

this variation may mitigate gene flow between otherwise fragmented populations (Blaum and 

Wichmann 2007).  As agricultural landscapes change on a seasonal basis, movement of 

jackrabbits through fields may vary seasonally as well, perhaps allowing migration between 

populations in one season that would be otherwise disconnected in other seasons. Continued 
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research is needed to establish to what extent corn fields are permeable to white-tailed 

jackrabbits, whether permeability differs among seasons, and how permeability of corn fields 

affects the genetic connectivity between these populations. 

 Using Bayesian clustering methods, we detected two distinct genetic populations of 

white-tailed jackrabbits among our samples.  Central Iowa jackrabbits were identified as one 

population and northwest Iowa, South Dakota and Montana jackrabbits were identified as 

belonging to the second population (NISD).  The significant differentiation between the two 

jackrabbit populations may be linked to the potential barriers of expansive corn fields, 

highways and distance dividing them.  However, genetic diversity levels were not 

significantly different between central Iowa and the NISD population.  The lack of 

significance in genetic diversity may be due to either recent differentiation of the two 

populations or some level of gene flow maintaining genetic connectivity.  Our estimates of 

migration suggested low levels of successful dispersal occur between these populations.  

These low migration rates may be explained if corn fields are the main driver in the 

differentiation of these populations and their permeability increases only with harvest.  

Harvest reduces corn fields to stubble for approximately 6 months of the year (November-

April).  Successful migration between populations of jackrabbits during this time may be 

limited by severe weather as well as physical barriers. Radio-telemetry studies and genetic 

studies similar to this one with increased sample sizes may give us more insight into the 

dispersal patterns of this species, decipher whether migration between the two populations is 

substantial enough to prevent complete isolation of the central Iowa population, and whether 

corn fields, highways, distance or some combination thereof are acting as significant barriers 

to gene flow.   
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 We detected a significant decline in size of the white-tailed jackrabbit population on 

the ISU Research Farm, in central Iowa, over the last four years (2006-2009).  Genetic drift 

and inbreeding are associated with small populations, but these effects may be mitigated by 

the occasional exchange of individuals with other populations that serve to increase a 

remnant population’s genetic diversity (Hanski and Gaggiotti 2004).  However, migration 

rates between the NISD and central Iowa jackrabbit populations and migration rates appear 

to be low.  If no other populations exist within a white-tailed jackrabbit’s maximum dispersal 

distance, or if no patches of suitable intervening habitat exist through which white-tailed 

jackrabbits can move between populations, central Iowa white-tailed jackrabbits will be 

increasingly subject to genetic drift and inbreeding, increasing vulnerability to local 

extirpation of the population.  Again, further sampling is needed to more adequately estimate 

migration rates between Iowa jackrabbit populations and indentify whether other populations 

or pockets of jackrabbits exist that were not sampled.  The central Iowa population should 

continue to be monitored in the future to detect any further declines in size.  Population size 

estimates should also be calculated in northwest Iowa to assess whether similar trends of 

decline are apparent.   

 Research into white-tailed jackrabbit reproductive biology should also be investigated 

as it influences population growth.  White-tailed jackrabbits may have up to 4 litters in a year 

(James and Seabloom 1969) but it is unknown how many juvenile jackrabbits survive to 

reproduce, how many litters they produce each year in Iowa, or their litter size.  The start of 

the breeding season has not been specifically examined in the state.  The breeding season can 

begin as early as February but is likely affected by environmental factors such as timing of 

snow melt and forage availability (James and Seabloom 1969; Rogowitz 1992).   The length 
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of winters can vary in Iowa and may play a role in the number of litters jackrabbits can 

produce.  Litter size and leveret survival may also be affected by forage availability and 

quality. Information on white-tailed jackrabbit reproductive biology along with adult survival 

rates can be used to develop population models.   

 We have shown that white-tailed jackrabbit movement patterns are affected by 

agricultural practices.  Migration rates between the two identified genetic populations, central 

Iowa and NISD, are low and agricultural fields are a potential barrier to gene flow between 

these populations.  Anthropogenic alterations of the landscape in Iowa, and other midwestern 

states, are forecasted to increase by 2016 (Heisey 2009) and many more questions regarding 

the response of white-tailed jackrabbits to these changes have been raised by my research 

findings.  The extent to which anthropogenic landscape changes may also alter other aspects 

of ecology, such as reproductive behavior and survival, in jackrabbits and other grassland-

adapted wildlife species has yet to be determined.    
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APPENDIX 1 
 

 

ID Location UTM 
Zone 

UTM 
Northing 

UTM 
Easting Latitude Longitude 

  1 Ag Farm 15N 4652018 436449 42.01762418 -93.76757026 
2 Lake County, SD  T105N, R51W, S17 14N 4875812 650678 44.01998558 -97.11999581 
3 Hancock County, Garfield Township, T96N,R24W,S26 15N 4772588 447524 43.10420036 -93.64490124 
4 Hancock County,Madison Township, T97N, R24W,S5 15N 4788684 442730 43.24878358 -93.70547922 
5 Dickinson County, T100N, R37W, S11, HWY 86 15N 4819284 324401 43.50583696 -95.17224533 
6 Osceola County, T100N, R39W, S34, 1/2 mile S of Harris 15N 4812415 302969 43.43868825 -95.43466334 
7 Marshall County  15N 4653002 500831 42.02905297 -92.98996134 
8 Ag Farm 15N 4652018 436449 42.01762418 -93.76757026 

10 Ag Farm 15N 4652018 436449 42.01762418 -93.76757026 
11 Ag Farm 15N 4652018 436449 42.01762418 -93.76757026 
12 Ag Farm 15N 4652018 436449 42.01762418 -93.76757026 
13 Ag Farm 15N 4652018 436449 42.01762418 -93.76757026 
14 Ag Farm 15N 4652018 436449 42.01762418 -93.76757026 
15 Ag Farm 15N 4652018 436449 42.01762418 -93.76757026 
17 Ag Farm 15N 4652018 436449 42.01762418 -93.76757026 
18 Ag Farm 15N 4652018 436449 42.01762418 -93.76757026 
19 Clay County 15N 4773175 324182 43.09088951 -95.1602076 
20 Boone 15N 4652018 436449 42.01762418 -93.76757026 
21 Dewey County, SD, 2 miles E of La Plant 14N 4999981 369793 45.14129029 -100.6561287 
22 Dewey County, SD, 1 mile W of Whitlock 14N 5002444 352240 45.15999022 -100.8800041 
23 Prairie City, SD 13N 4983437 578815 45.00000123 -104.0000038 
24 Perkins County, SD, 5 miles W of Bison 13N 5044280 697995 45.52387654 -102.4646349 
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25 Potter County, SD, 1/4 mile W of Gettysburg 14N 4984721 424725 45.01194266 -99.95527953 
26 O'brien County, Calodonia, Section 5 15N 4763587 269180 42.98987265 -95.83131214 
27 O'brien County, Section 27, Lincoln Township, SW 1/4 15N 4785263 292501 43.19160694 -95.55363543 
28 Dickinson County, Okoboji Township, T98, R37, S36 15N 4792411 324640 43.26408907 -95.1606816 
29 Spencer Airport 15N 4779586 325898 43.14897625 -95.14114987 
30 Pocahontas County 15N 4732161 362065 42.729562 -94.68489051 
31 Emmet County, sec 27, R-34W T-98N 15N 4793627 350141 43.28054495 -94.84697824 
32 Polk Co Ankeny TRS81-23-30 SW 15N 4627584 452674 41.79870602 -93.56965557 
33 Polk County, Crocker Township, Sec 11, T-80N R-24W 15N 4622558 449127 41.75321965 -93.61191754 
39 Spencer Airport 15N 4779586 325898 43.14897625 -95.14114987 
40 Spencer Airport 15N 4779586 325898 43.14897625 -95.14114987 
41 Montana 13N 5357645 377037 48.35999015 -106.6600055 
42 Montana 13N 5357645 377037 48.35999015 -106.6600055 
43 Montana 13N 5357645 377037 48.35999015 -106.6600055 
44 Montana 13N 5357645 377037 48.35999015 -106.6600055 
45 Montana 13N 5357645 377037 48.35999015 -106.6600055 
46 Montana 13N 5357645 377037 48.35999015 -106.6600055 
47 Montana 13N 5357645 377037 48.35999015 -106.6600055 
48 Ag Farm 15N 4652018 436449 42.01762418 -93.76757026 
49 Ag Farm 15N 4652018 436449 42.01762418 -93.76757026 
50 Ag Farm  15N 4652018 436449 42.01762418 -93.76757026 
52  central SD 14N 4915667 421149 44.38999613 -99.9900038 
53 Eastern SD  14N 4914078 620308 44.36999545 -97.49000451 
55 Eastern SD 14N 4843623 475659 43.7452468 -99.30231116 
56 Eastern SD 14N 4843623 475659 43.7452468 -99.30231116 
59 Eastern, SD 14N 4843623 475659 43.7452468 -99.30231116 
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60 Brule City, SD N 43. 74525, W 99.30231 14N 4843623 475659 43.7452468 -99.30231116 
61 Brule City, SD N 43. 74525, W 99.30231 14N 4843623 475659 43.7452468 -99.30231116 
62 Brule City, SD N 43. 74525, W 99.30231 14N 4843623 475659 43.7452468 -99.30231116 
63 Brule City, SD N 43. 74525, W 99.30231 14N 4843623 475659 43.7452468 -99.30231116 
64 Brule City, SD N 43. 74525, W 99.30231 14N 4843623 475659 43.7452468 -99.30231116 
65 Brule City, SD N 43. 74525, W 99.30231 14N 4843623 475659 43.7452468 -99.30231116 
66 Brule City, SD N 43. 74525, W 99.30231 14N 4843623 475659 43.7452468 -99.30231116 
67 Brule City, SD N 43. 74525, W 99.30231 14N 4843623 475659 43.7452468 -99.30231116 
68 Brule City, SD N 43. 74525, W 99.30231 14N 4843623 475659 43.7452468 -99.30231116 
69 Brule City, SD N 43. 74525, W 99.30231 14N 4843623 475659 43.7452468 -99.30231116 
70 Brule City, SD N 43. 74525, W 99.30231 14N 4843623 475659 43.7452468 -99.30231116 
71 Brule City, SD N 43. 74525, W 99.30231 14N 4843623 475659 43.7452468 -99.30231116 
72 Brule City, SD N 43. 74525, W 99.30231 14N 4843623 475659 43.7452468 -99.30231116 
73 Brule City, SD N 43. 74525, W 99.30231 14N 4843623 475659 43.7452468 -99.30231116 
74 Brule City, SD N 43. 74525, W 99.30231 14N 4843623 475659 43.7452468 -99.30231116 
75 Brule City, SD N 43. 74525, W 99.30231 14N 4843623 475659 43.7452468 -99.30231116 
76 Brule City, SD N 43. 74525, W 99.30231 14N 4843623 475659 43.7452468 -99.30231116 
77 Brule City, SD N 43. 74525, W 99.30231 14N 4843623 475659 43.7452468 -99.30231116 
78 Brule City, SD N 43. 74525, W 99.30231 14N 4843623 475659 43.7452468 -99.30231116 
79 Brule City, SD N 43. 74525, W 99.30231 14N 4843623 475659 43.7452468 -99.30231116 
80 Brule City, SD N 43. 74525, W 99.30231 14N 4843623 475659 43.7452468 -99.30231116 
81 Brule City, SD N 43. 74525, W 99.30231 14N 4843623 475659 43.7452468 -99.30231116 
82 Brule City, SD N 43. 74525, W 99.30231 14N 4843623 475659 43.7452468 -99.30231116 
83 Brule City, SD N 43. 74525, W 99.30231 14N 4843623 475659 43.7452468 -99.30231116 
85 Brule City, SD N 43. 74525, W 99.30231 14N 4843623 475659 43.7452468 -99.30231116 
86 Brule City, SD N 43. 74525, W 99.30231 14N 4843623 475659 43.7452468 -99.30231116 
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87 Brule County, SD, N 43.52055, W 98.98059 14N 4818624 501569 43.5205517 -98.98058574 
88 Sully/HughesCounty Line, SD, 196 St., N 44. 54801, W 100.32361 14N 4933594 394862 44.54800696 -100.3236126 
89 Hughes County, SD, 201 St and 291 Ave, N 44.47587, W 100. 33637 14N 4925597 393718 44.47586411 -100.3363648 
90 Hughes County, SD, 201 St and 296 Ave, N 44.47305, W 100. 23024 14N 4925152 402153 44.47305119 -100.2302463 

91 
Hughes County,SD,Greg Goose Rd. and 197 St., N 44. 52850, 
W100.35057 14N 4931462 392685 44.52849754 -100.3505683 

92 Sully County, SD, 194th St and 288 Ave., N 44. 57355, W 100.36449 14N 4936484 391662 44.57354288 -100.364495 
93 CharlesMit County,SD T99N, R66W, S10, SW 1/4 14N 4915667 421149 44.38999613 -99.9900038 
94 Hughes County, SD  W1/2 Sec 24, T 111N, R 74 W 14N 4915667 421149 44.38999613 -99.9900038 
95 Hughes County, SD  SW1/4 Sec 6, T 112N, R 75 W 14N 4915667 421149 44.38999613 -99.9900038 
96 SD, Sec 15, T111N, R71W, Hyde County 14N 4918546 472057 44.41966737 -99.35101255 
97 SD, Sec 31, T110N, R66W, Hand County 14N 4904186 514938 44.29077096 -98.81276367 
98 SD, Sec 4, T112 N, R80W, Hughes County 14N 4932953 383833 44.54054355 -100.4622725 
99 SD, Sec 5, T109N, R72W, Hyde County 14N 4902383 459143 44.27354458 -99.51196125 

100 Ag Farm (formerly 110) 15N 4652018 436449 42.01762418 -93.76757026 

101 
Emmet County, High Lake Township, 1/4 mi SW of Wallingford, IA on 
250th St 15N 4796189 358616 43.3052449 -94.74323332 

102 Osceola County, Highway 60 and 140th St 15N 4810954 291645 43.42247461 -95.5738988 
103 Clay County, Spencer Airport 15N 4779586 325898 43.14897625 -95.14114987 
104 Lyon County, HWY A34 1 mi W of George 14N 4803218 743079 43.34242487 -96.00111147 
105 Ag Farm 15N 4652018 436449 42.01762418 -93.76757026 
106 Ag Farm 15N 4652018 436449 42.01762418 -93.76757026 
107 Ag Farm 15N 4652018 436449 42.01762418 -93.76757026 
108 Ag Farm 15N 4652018 436449 42.01762418 -93.76757026 
109 Ag Farm 15N 4652018 436449 42.01762418 -93.76757026 
110 Jackson County, SD N 43.94394  W 101.91125 14N 4869767 266370 43.94387419 -101.9112451 
111 SW of Edgemont, SD Fall River County  N 43 15 42  W 103  58  31.9 13N 4778913 615193 43.1541972 -103.5831952 
112 Meade County, SD  N 44. 37275  W 102.84350 13N 4915536 671810 44.37272734 -102.843504 
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113 NW of Edgemont, SD Fall River County  N 43 23 03.4  W 103  53  44.1 13N 4787437 619011 43.23033732 -103.5344156 
114 SW of Edgemont, SD Fall River County  N 43 15 37  W 103  52  39.8 13N 4778941 620009 43.1536999 -103.5239741 
115 SW of Edgemont, SD  N 43 15 36.5  W 103  52  39.9 13N 4778935 620008 43.15364604 -103.5239877 
116 Sruther Fall, SD  River County, Ardmore Rd. 13N 4789641 620143 43.24999749 -103.5199996 
117 Lyon County, T98NR45W?, S4 14N  4802256 729700 43.33799514 -96.16636816 
363 Ag Farm 15N 4652018 436449 42.01762418 -93.76757026 
942  Ag Farm 15N 4652018 436449 42.01762418 -93.76757026 
948 SE of Ag Farm 15N 4651815 437963 42.01591683 -93.7492642 
958 Ag Farm 15N 4652018 436449 42.01762418 -93.76757026 
962 Ag Farm 15N 4652018 436449 42.01762418 -93.76757026 
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APPENDIX 2 

ID Region Sol 08 
 

Sol 28 
 

Sol 33 
 

Sat 02 
 

Sat 03 
 

Sat 12 
 

Sat 13 
 

Sat 16 
 1 Central 115 117 153 157 215 215 251 257 133 133 107 131 122 122 106 106 

2 SD 107 113 153 157 215 215 243 255 133 133 119 135 114 116 090 090 

3 NW 113 113 153 153 215 217 251 257 127 133 123 131 116 116 090 094 

4 NW 107 113 153 157 215 215 251 251 127 133 123 123 116 116 100 116 

5 NW 107 107 153 153 215 215 239 245 127 133 111 123 116 116 098 098 

6 NW 107 115 171 171 211 215 245 263 133 133 111 111 116 116 090 116 

7 Central 105 107 153 183 215 215 249 255 127 133 131 135 116 116 090 100 

8 Central 107 107 153 157 215 215 251 259 133 133 115 123 116 116 100 100 

10 Central 115 117 153 187 215 215 249 251 133 133 107 123 116 116 102 102 

11 Central 107 117 153 157 215 215 251 261 133 133 111 123 116 116 102 102 

12 Central 113 117 153 153 215 215 245 251 127 133 119 123 116 116 096 102 

13 Central 107 115 153 157 213 215 247 255 133 133 111 123 116 118 102 116 

14 Central 107 115 153 183 215 215 251 255 127 133 107 123 116 118 098 102 

15 Central 107 117 153 157 215 215 245 251 133 133 111 123 116 116 102 102 

17 Central 107 115 161 161 215 217 255 255 133 133 119 123 116 118 096 102 

18 Central 115 117 157 157 215 215 255 261 133 133 123 131 116 116 102 102 

19 NW 113 115 159 171 215 217 247 257 127 133 107 111 118 120 090 098 

20 Central 113 115 153 153 215 215 251 251 127 133 107 123 116 116 102 102 

21 SD 107 107 153 157 215 215 251 251 133 133 119 127 116 120 106 106 

22 SD 113 113 153 153 211 217 251 257 133 133 107 115 116 118 090 102 

23 SD 113 127 153 169 215 215 239 253 127 133 111 115 116 116 090 116 

24 SD 115 135 171 183 215 215 255 257 133 133 111 123 116 116 090 100 

25 SD 133 133 183 183 215 217 239 251 133 133 119 123 116 122 096 096 
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26 NW 113 113 153 155 215 215 253 255 133 133 119 123 116 122 090 090 

27 NW 107 113 153 153 213 215 251 253 133 133 111 123 114 116 090 096 

28 NW 107 115 000 000 215 215 245 255 127 133 111 111 116 120 090 090 

29 NW 113 115 153 159 215 217 251 251 127 133 111 115 114 116 098 098 

30 NW 107 113 153 153 215 215 243 253 133 133 119 123 116 118 102 102 

31 NW 115 115 153 157 215 215 247 263 127 133 123 127 118 122 090 116 

32 Central 107 117 151 151 215 215 259 259 127 133 111 119 116 118 098 098 

33 Central 115 115 153 153 215 217 251 255 127 133 119 123 116 118 098 102 

39 NW 107 109 153 183 215 215 253 255 127 127 119 127 116 116 096 108 

40 NW 107 115 153 183 215 217 255 263 127 127 111 123 116 116 090 098 

41 Montana 107 115 153 153 215 215 263 265 133 133 115 123 116 120 098 098 

42 Montana 105 113 153 153 215 219 241 257 127 127 111 127 116 118 100 110 

43 Montana 107 117 155 159 215 217 249 259 127 133 111 119 116 120 098 098 

44 Montana 105 107 155 157 217 217 259 259 133 133 115 119 116 116 100 100 

45 Montana 105 107 153 183 215 215 257 257 127 133 119 123 120 120 098 098 

46 Montana 115 117 153 161 215 217 251 255 127 127 111 135 116 116 096 098 

47 Montana 107 107 153 161 215 217 239 263 133 133 135 135 116 116 090 098 

48 Central 113 115 153 171 215 215 251 261 133 133 123 123 116 116 098 102 

49 Central 107 131 153 171 215 215 259 261 133 133 123 123 116 116 102 102 

50 Central 107 115 157 157 215 215 255 259 133 133 115 119 116 116 096 102 

52 SD 107 117 153 153 215 215 247 257 133 133 111 119 116 118 090 100 

53 SD 107 107 153 153 215 217 249 249 127 133 123 127 116 120 090 090 

55 SD 113 113 153 157 215 215 249 249 133 133 107 115 116 120 096 096 

56 SD 107 107 153 153 215 217 249 249 127 133 123 127 116 120 090 090 
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59 SD 113 113 153 157 215 215 249 249 133 133 107 115 116 120 096 096 

60 SD 105 109 159 159 215 215 239 263 133 133 111 123 114 118 098 100 

61 SD 115 133 163 163 215 217 247 251 133 133 119 127 120 120 106 106 

62 SD 105 115 153 169 215 217 247 247 133 133 111 131 120 120 102 102 

63 SD 107 109 151 151 215 215 243 255 127 127 115 119 116 116 102 106 

64 SD 107 107 153 185 215 215 247 251 133 133 115 135 116 116 106 106 

65 SD 105 113 153 169 215 219 251 257 127 133 111 135 116 120 090 090 

66 SD 105 115 000 171 215 215 251 257 133 133 115 127 116 116 090 090 

67 SD 113 117 159 159 215 215 255 255 127 133 115 119 116 118 096 106 

68 SD 105 113 151 153 215 215 255 255 127 133 119 127 116 118 090 090 

69 SD 107 113 153 177 215 215 249 255 127 133 115 115 120 122 096 106 

70 SD 103 107 000 181 215 217 249 251 127 135 107 115 116 118 096 106 

71 SD 111 115 155 155 215 215 247 249 133 133 107 127 116 122 100 100 

72 SD 107 131 185 185 211 217 253 259 127 133 123 123 116 118 096 098 

73 SD 107 107 153 185 215 217 255 255 127 127 119 127 116 116 090 090 

74 SD 105 113 000 185 215 215 249 257 127 127 111 111 116 116 096 096 

75 SD 115 131 153 185 215 217 253 255 133 133 107 127 116 118 090 098 

76 SD 115 119 157 171 215 217 239 251 133 133 115 119 116 116 100 100 

77 SD 115 131 155 155 215 215 247 253 127 133 115 115 120 120 108 108 

78 SD 105 113 153 175 215 217 247 251 127 133 115 123 116 120 098 098 

79 SD 115 119 157 173 215 217 239 253 133 133 115 119 116 116 106 106 

80 SD 105 117 185 185 213 215 239 249 127 127 111 123 116 116 098 098 

81 SD 107 115 153 153 215 215 239 249 127 127 111 111 116 118 106 108 

82 SD 107 117 153 185 215 215 241 247 127 133 123 131 114 118 098 098 

83 SD 107 115 153 157 215 217 249 255 133 133 111 123 116 116 096 098 
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85 SD 115 115 153 153 215 217 249 253 127 133 107 119 116 116 098 098 

86 SD 113 117 177 181 217 217 253 257 127 133 119 127 116 116 100 100 

87 SD 107 113 153 155 215 215 255 263 127 133 115 131 120 120 106 106 

88 SD 113 115 157 181 215 217 257 263 127 127 119 131 116 116 090 100 

89 SD 115 117 153 181 215 215 251 259 127 133 107 119 116 116 096 096 

90 SD 113 113 153 169 215 215 247 255 127 133 119 123 120 120 106 106 

91 SD 105 107 153 157 215 215 249 259 127 127 119 127 116 116 106 106 

92 SD 105 113 159 159 215 215 243 255 127 133 107 119 116 120 098 098 

93 SD 107 113 153 153 215 215 251 253 127 133 115 115 116 116 090 090 

94 SD 105 133 153 171 211 217 251 253 127 133 119 123 116 118 096 098 

95 SD 105 115 153 153 211 215 251 253 127 133 119 123 118 118 098 098 

96 SD 107 111 171 171 215 215 251 259 133 133 111 127 120 120 106 106 

97 SD 105 107 153 157 215 215 249 255 133 133 111 119 116 116 104 104 

98 SD 107 113 153 153 215 215 247 255 127 133 111 119 116 120 094 094 

99 SD 105 115 153 153 215 217 251 251 127 127 111 123 124 124 100 100 

100 Central 107 107 153 157 213 215 251 261 133 133 123 123 116 118 102 102 

101 NW 115 115 153 159 215 215 257 259 133 133 119 123 118 120 094 094 

102 NW 113 113 153 153 215 215 239 261 133 133 119 135 116 120 090 094 

103 NW 113 115 171 179 215 215 251 255 127 133 111 119 114 116 098 098 

104 NW 105 105 157 159 215 215 251 255 127 133 107 119 116 116 100 100 

105 Central 107 115 157 157 213 215 255 255 133 133 111 115 118 118 098 098 

106 Central 107 117 157 157 215 217 255 259 133 133 119 137 116 116 102 106 

107 Central 107 107 153 157 215 215 247 255 133 133 115 123 116 116 098 106 
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108 Central 107 117 157 157 215 215 253 259 133 133 131 135 116 118 106 106 

109 Central 107 117 153 157 215 215 259 261 133 133 111 111 116 118 106 106 

110 SD 105 115 169 177 215 217 247 253 127 133 107 115 120 120 090 090 

111 SD 105 115 153 153 215 215 247 253 127 133 111 111 120 120 098 106 

112 SD 113 119 153 157 215 217 243 259 127 133 111 131 118 118 096 106 

113 SD 113 117 153 185 211 215 247 251 133 133 107 119 116 118 090 090 

114 SD 109 113 153 185 215 215 247 267 127 133 107 127 116 116 096 100 

115 SD 107 115 159 185 215 215 247 251 127 133 107 115 116 000 100 104 

116 SD 115 115 153 153 211 215 247 257 133 133 111 131 116 120 096 098 

117 NW 105 113 153 157 211 215 253 257 127 133 107 119 118 118 098 098 

363 Central 107 115 153 157 215 215 255 255 133 133 111 123 116 116 116 116 

942 Central 107 117 153 183 215 215 261 261 127 133 107 107 116 116 102 116 

948 Central 117 117 153 185 215 215 249 253 127 133 107 123 116 116 102 102 

958 Central 115 131 157 171 215 215 255 261 133 133 127 131 116 116 102 116 

962 Central 107 115 153 157 215 215 251 261 133 133 107 131 116 116 102 102 
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